Uniform wet-Spinning Mechanically Automated (USMA) fiber device

被引:1
|
作者
Mitropoulos, Alexander N. [1 ,2 ]
Kiesewetter, Kylor T. [2 ]
Horne, Eric [3 ]
Butler, Jeff [3 ]
Loverde, Joseph R. [2 ]
Wickiser, J. Kenneth [2 ,4 ]
机构
[1] US Mil Acad, Dept Math Sci, West Point, NY 10996 USA
[2] US Mil Acad, Dept Chem & Life Sci, West Point, NY 10996 USA
[3] US Mil Acad, Dept Civil & Mech Engn, West Point, NY 10996 USA
[4] US Mil Acad, Acad Res Div, West Point, NY 10996 USA
来源
HARDWAREX | 2020年 / 8卷
关键词
Wet spinning; Biomaterials; Biopolymers; Collagen; Biotextile; Fiber; COLLAGEN; BIOMATERIALS; HYDROGELS;
D O I
10.1016/j.ohx.2020.e00124
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bioengineering techniques for producing fibers from biomaterials is a growing requirement in medical device technology research and development environments. Scale-up and control of diameter, shape, and length of fibrous proteins and elastomeric polymers are essential to produce defined and consistent materials for experimentation and clinical use. Here, we developed a novel wet spinning fiber extruder and spooler system engineered to draw precipitated fibers several meters in length across five spools. By controlling both the extrusion and spooling rate, the diameter of the fiber can be controlled on the order of 10-1000 mm. Using this system, we extruded and spooled precipitated Type-1 Collagen fibers up to 7.5 m in length on a single spool with a controllable diameter range of 30-50 mu m. Furthermore, this device facilitated bundling of fibers directly on the spool in order to create 1-12 cm long fiber bundles for experimentation. This system may be used in the laboratory to scale up biomaterial fiber production to produce degradable scaffolds made from synthetic or natural materials for a range of biomedical applications. (C) 2020 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Wet-Spinning of Osmotically Stressed Silk Fibroin
    Sohn, Sungkyun
    Gido, Samuel P.
    [J]. BIOMACROMOLECULES, 2009, 10 (08) : 2086 - 2091
  • [22] Dual roles of sodium polyacrylate in alginate fiber wet-spinning: Modify the solution rheology and strengthen the fiber
    Li, Shanshan
    Biswas, Manik Chandra
    Ford, Ericka
    [J]. CARBOHYDRATE POLYMERS, 2022, 297
  • [23] Processing and characterization of polyacrylonitrile/soy protein isolate/polyurethane wet-spinning solution and fiber
    Ru Xiao
    Qingfang Zhu
    Lixia Gu
    [J]. Fibers and Polymers, 2010, 11 : 42 - 47
  • [24] A NEW AMORPHOUS HEAT-RESISTANT AROMATIC POLYAMIDE FIBER PREPARED BY WET-SPINNING
    JAGER, J
    KRINS, B
    SIKKEMA, DJ
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 1993, 48 (11) : 1945 - 1951
  • [25] Processing and Characterization of Polyacrylonitrile/Soy Protein Isolate/Polyurethane Wet-spinning Solution and Fiber
    Xiao, Ru
    Zhu, Qingfang
    Gu, Lixia
    [J]. FIBERS AND POLYMERS, 2010, 11 (01) : 42 - 47
  • [26] Recombinant Pyriform Spider Silk Expression and Wet-Spinning
    LIEBIEDIEV Pavlo
    林瑛
    [J]. Journal of Donghua University(English Edition), 2022, 39 (01) : 28 - 34
  • [27] The coagulation process of nascent fibers in PAN wet-spinning
    Juan Chen
    Heyi Ge
    Huashi Liu
    Guozhong Li
    Chengguo Wang
    [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2010, 25 : 200 - 205
  • [28] The Coagulation Process of Nascent Fibers in PAN Wet-spinning
    陈娟
    葛曷一
    [J]. Journal of Wuhan University of Technology(Materials Science), 2010, (02) : 200 - 205
  • [29] The formation of polyacrylonitrile nascent fibers in wet-spinning process
    Chen, Juan
    Ge, He-Yi
    Dong, Xing-Guang
    Wang, Cheng-Guo
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 106 (01) : 692 - 696
  • [30] Boosting Lithium Storage Properties of MOF Derivatives through a Wet-Spinning Assembled Fiber Strategy
    Zhang, Lin
    Liu, Wenxian
    Shi, Wenhui
    Xu, Xilian
    Mao, Jing
    Li, Peng
    Ye, Chenzeng
    Yin, Ruilian
    Ye, Shaofeng
    Liu, Xiaoyue
    Cao, Xiehong
    Gao, Chao
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (52) : 13792 - 13799