Uniform wet-Spinning Mechanically Automated (USMA) fiber device

被引:1
|
作者
Mitropoulos, Alexander N. [1 ,2 ]
Kiesewetter, Kylor T. [2 ]
Horne, Eric [3 ]
Butler, Jeff [3 ]
Loverde, Joseph R. [2 ]
Wickiser, J. Kenneth [2 ,4 ]
机构
[1] US Mil Acad, Dept Math Sci, West Point, NY 10996 USA
[2] US Mil Acad, Dept Chem & Life Sci, West Point, NY 10996 USA
[3] US Mil Acad, Dept Civil & Mech Engn, West Point, NY 10996 USA
[4] US Mil Acad, Acad Res Div, West Point, NY 10996 USA
来源
HARDWAREX | 2020年 / 8卷
关键词
Wet spinning; Biomaterials; Biopolymers; Collagen; Biotextile; Fiber; COLLAGEN; BIOMATERIALS; HYDROGELS;
D O I
10.1016/j.ohx.2020.e00124
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bioengineering techniques for producing fibers from biomaterials is a growing requirement in medical device technology research and development environments. Scale-up and control of diameter, shape, and length of fibrous proteins and elastomeric polymers are essential to produce defined and consistent materials for experimentation and clinical use. Here, we developed a novel wet spinning fiber extruder and spooler system engineered to draw precipitated fibers several meters in length across five spools. By controlling both the extrusion and spooling rate, the diameter of the fiber can be controlled on the order of 10-1000 mm. Using this system, we extruded and spooled precipitated Type-1 Collagen fibers up to 7.5 m in length on a single spool with a controllable diameter range of 30-50 mu m. Furthermore, this device facilitated bundling of fibers directly on the spool in order to create 1-12 cm long fiber bundles for experimentation. This system may be used in the laboratory to scale up biomaterial fiber production to produce degradable scaffolds made from synthetic or natural materials for a range of biomedical applications. (C) 2020 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Graphite Fiber Electrode by Continuous Wet-Spinning
    Choi, Woonghee
    Kwon, Youbin
    Yu, Woong-Ryeol
    Kim, Dong Wook
    [J]. ACS APPLIED ENERGY MATERIALS, 2022, 7 (8963-8972) : 8963 - 8972
  • [2] Interrupted wet-spinning process for chitosan hollow fiber elaboration
    Araiza, Rocio Nohemi Rivas
    Rochas, Cyrille
    David, Laurent
    Domard, Alain
    [J]. MACROMOLECULAR SYMPOSIA, 2008, 266 : 1 - 5
  • [3] Thermal transport in graphene fiber fabricated by wet-spinning method
    Lin, Huan
    Dong, Hua
    Xu, Shen
    Wang, Xinwei
    Zhang, Jingkui
    Wang, Yongchun
    [J]. MATERIALS LETTERS, 2016, 183 : 147 - 150
  • [4] Advances in Porous Graphene and Scalable Wet-Spinning Fiber Assembly
    Ambade, Rohan B.
    Lee, Ki Hyun
    Kang, Dong Jun
    Han, Tae Hee
    [J]. ACCOUNTS OF MATERIALS RESEARCH, 2022, 4 (05): : 389 - 402
  • [6] ELASTIC STRESSES GENERATED DURING FIBER FORMATION BY WET-SPINNING
    PAUL, DR
    ARMSTRON.AA
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 1973, 17 (04) : 1269 - 1282
  • [7] Characterization of Polyacrylonitrile/Soy Protein Isolate/Plyurethane wet-spinning Fiber
    Xiao, Ru
    Zhu, Qingfang
    Gu, Lixia
    [J]. PROCEEDINGS OF THE FIBER SOCIETY 2009 SPRING CONFERENCE, VOLS I AND II, 2009, : 373 - 377
  • [8] Microfluidic wet-spinning of alginate microfibers: a theoretical analysis of fiber formation
    Bonhomme, Oriane
    Leng, Jacques
    Colin, Annie
    [J]. SOFT MATTER, 2012, 8 (41) : 10641 - 10649
  • [9] Preparation of pure egg albumen fiber through coaxial wet-spinning
    Zhuang, Yan
    Xu, Yuan
    Wang, Han
    Wang, Linfeng
    Liu, Changjun
    Xu, Weilin
    Yang, Hongjun
    [J]. MATERIALS LETTERS, 2019, 253 : 63 - 66
  • [10] Theoretical and experimental investigation of the wet-spinning process for mechanically strong carbon nanotube fibers
    Jeong, Hyeon Dam
    Kim, Seo Gyun
    Choi, Gyeong Min
    Park, Minji
    Ku, Bon-Cheol
    Lee, Heon Sang
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 412