Zitterbewegung in time-reversal Weyl semimetals

被引:8
|
作者
Huang, Tangyun [1 ]
Ma, Tianxing [1 ]
Wang, Li-Gang [2 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Zitterbewegung; Weyl semimetals; time-reversal; NEUTRINOS; GRAPHENE; ABSENCE; LATTICE; PROOF;
D O I
10.1088/1361-648X/aac23b
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We perform a systematic study of the Zitterbewegung effect of fermions, which are described by a Gaussian wave with broken spatial-inversion symmetry in a three-dimensional low-energy Weyl semimetal. Our results show that the motion of fermions near the Weyl points is characterized by rectilinear motion and Zitterbewegung oscillation. The ZB oscillation is affected by the width of the Gaussian wave packet, the position of the Weyl node, and the chirality and anisotropy of the fermions. By introducing a one-dimensional cosine potential, the new generated massless fermions have lower Fermi velocities, which results in a robust relativistic oscillation. Modulating the height and periodicity of periodic potential demonstrates that the ZB effect of fermions in the different Brillouin zones exhibits quasi-periodic behavior. These results may provide an appropriate system for probing the Zitterbewegung effect experimentally.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] TIME-REVERSAL AND IRREVERSIBILITY
    GALOR, B
    SCIENCE, 1972, 178 (4065) : 1119 - &
  • [32] Time-Reversal Acoustics
    Fink, Mathias
    PROCEEDINGS OF THE SECOND HELAS INTERNATIONAL CONFERENCE: HELIOSEISMOLOGY, ASTEROSEISMOLOGY AND MHD CONNECTIONS, 2008, 118
  • [33] LOGIC OF TIME-REVERSAL
    POST, EJ
    FOUNDATIONS OF PHYSICS, 1979, 9 (1-2) : 129 - 161
  • [34] Time-Reversal Violation
    Bernabeu, Jose
    Martinez-Vidal, Fernando
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 65, 2015, 65 : 403 - 427
  • [35] Time-reversal and irreversibility
    Bohm, A
    Kielanowski, P
    ACTA PHYSICA POLONICA B, 1996, 27 (10): : 2295 - 2317
  • [36] COMMUNICATION AND TIME-REVERSAL
    MACBEATH, M
    SYNTHESE, 1983, 56 (01) : 27 - 46
  • [37] Time-reversal and entropy
    Maes, C
    Netocny, K
    JOURNAL OF STATISTICAL PHYSICS, 2003, 110 (1-2) : 269 - 310
  • [38] Time-reversal acoustics
    Fink, Mathias
    INVERSE PROBLEMS, MULTI-SCALE ANALYSIS AND EFFECTIVE MEDIUM THEORY, 2006, 408 : 151 - 179
  • [39] TIME-REVERSAL OF DIFFUSIONS
    HAUSSMANN, UG
    PARDOUX, E
    ANNALS OF PROBABILITY, 1986, 14 (04): : 1188 - 1205
  • [40] TIME-REVERSAL STABILITY
    BURNEY, D
    AMERICAN ECONOMIST, 1972, 16 (02): : 101 - 105