Six-dimensional calculation of the vibrational spectrum of the HFCO molecule

被引:58
|
作者
Viel, A [1 ]
Leforestier, C [1 ]
机构
[1] Univ Montpellier 2, Lab Struct & Dynam Syst Mol & Solides, UMR 5636, F-34095 Montpellier 5, France
来源
JOURNAL OF CHEMICAL PHYSICS | 2000年 / 112卷 / 03期
关键词
D O I
10.1063/1.480674
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bound energy levels, up to 5000 cm(-1) of internal excitation, have been computed for the HFCO molecule. An exact six-dimensional (6D) quantum Hamiltonian, expressed in terms of Jacobi vectors, has been used. It is shown to lead to a compact form of the kinetic energy operator, easy to implement in the calculations. The primary discrete variable representation (DVR) basis set has been contracted by means of the adiabatic pseudospectral method of Friesner [J. Chem. Phys. 99, 324 (1993)]. Two different, global, potential energy surfaces have been considered. The calculated energy levels have been successfully assigned by an automatic labeling procedure. These levels have been compared to the experimental results, providing a test of the accuracy of the existing surfaces. (C) 2000 American Institute of Physics. [S0021-9606(00)01503-8].
引用
收藏
页码:1212 / 1220
页数:9
相关论文
共 50 条
  • [11] A six-dimensional view on twistors
    Sinkovics, A
    Verlinde, E
    PHYSICS LETTERS B, 2005, 608 (1-2) : 142 - 150
  • [12] Superforms in six-dimensional superspace
    Arias, Cesar
    Linch, William D., III
    Ridgway, Alexander K.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05):
  • [13] Six-dimensional Einstein solvmanifolds
    Nikitenko, EV
    Nikonorov, YG
    DOKLADY MATHEMATICS, 2005, 71 (03) : 434 - 437
  • [14] Mechanics in Six-Dimensional Spacetime
    V. S. Barashenkov
    Foundations of Physics, 1998, 28 : 471 - 484
  • [15] Mechanics in six-dimensional spacetime
    Barashenkov, VS
    FOUNDATIONS OF PHYSICS, 1998, 28 (03) : 471 - 484
  • [16] The six-dimensional Delaunay polytopes
    Dutour, M
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (04) : 535 - 548
  • [17] Six-dimensional quadratic forms
    Laghribi, A
    MATHEMATISCHE NACHRICHTEN, 1999, 204 : 125 - 135
  • [18] Six-dimensional 'rotational relativity'
    Yefremov, Alexander P.
    Acta Physica Hungarica New Series Heavy Ion Physics, 2000, 11 (01): : 147 - 153
  • [19] Superforms in six-dimensional superspace
    Cesar Arias
    William D. Linch
    Alexander K. Ridgway
    Journal of High Energy Physics, 2016
  • [20] Six-dimensional "Rotational Relativity"
    Yefremov, AP
    ACTA PHYSICA HUNGARICA NEW SERIES-HEAVY ION PHYSICS, 2000, 11 (1-2): : 147 - 153