Gap time bias in incident and prevalent cohorts

被引:0
|
作者
Wang, MC [1 ]
机构
[1] Johns Hopkins Univ, Sch Hyg & Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
关键词
gap time; informative censoring; longitudinal studies; multiple events; prevalent cohort;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiple event data are frequently encountered in incident and prevalent cohort studies when the multiple events are considered as the major outcomes. For incident cohorts, statistical analysis for the time to the first event, the first gap time, can be conducted using standard techniques in survival analysis under appropriate conditions. These techniques are, nevertheless, inappropriate for analyzing the second gap time because of the presence of induced informative censoring. For prevalent cohorts, because the sample is biased in general, standard methods do not apply to gap times of any order, but techniques for truncated data can be used for the analysis of the first gap time. It is shown that the combined incident and prevalent data form the usual survival data for analysis of the second gap time when certain stationarity conditions are satisfied. The problems are illustrated by a cohort example to study the natural history of Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS).
引用
收藏
页码:999 / 1010
页数:12
相关论文
共 50 条
  • [31] Walkability and its association with prevalent and incident diabetes among adults in different regions of Germany: results of pooled data from five German cohorts
    Nadja Kartschmit
    Robynne Sutcliffe
    Mark Patrick Sheldon
    Susanne Moebus
    Karin Halina Greiser
    Saskia Hartwig
    Detlef Thürkow
    Ulrike Stentzel
    Neeltje van den Berg
    Kathrin Wolf
    Werner Maier
    Annette Peters
    Salman Ahmed
    Corinna Köhnke
    Rafael Mikolajczyk
    Andreas Wienke
    Alexander Kluttig
    Gavin Rudge
    BMC Endocrine Disorders, 20
  • [32] Prevalent vs Incident Screen: Why Does It Matter?
    Hayward, Jessica H.
    Lee, Amie Y.
    Sickles, Edward A.
    Ray, Kimberly M.
    JOURNAL OF BREAST IMAGING, 2024, 6 (03) : 232 - 237
  • [33] Cardiovascular risks associated with incident and prevalent periodontal disease
    Yu, Yau-Hua
    Chasman, Daniel I.
    Buring, Julie E.
    Rose, Lynda
    Ridker, Paul M.
    JOURNAL OF CLINICAL PERIODONTOLOGY, 2015, 42 (01) : 21 - 28
  • [34] Predictive modeling for incident and prevalent diabetes risk evaluation
    Masconi, Katya L.
    Echouffo-Tcheugui, Justin Basile
    Matsha, Tandi E.
    Erasmus, Rajiv T.
    Kengne, Andre Pascal
    EXPERT REVIEW OF ENDOCRINOLOGY & METABOLISM, 2015, 10 (03) : 277 - 284
  • [35] Estimating Incident Population Distribution from Prevalent Data
    Chan, Kwun Chuen Gary
    Wang, Mei-Cheng
    BIOMETRICS, 2012, 68 (02) : 521 - 531
  • [36] ASSOCIATION OF ABDOMINAL ADIPOSITY AND PREVALENT AND INCIDENT POLYARTICULAR OSTEOARTHRITIS
    Eaton, C. B.
    Driban, J. B.
    Davis, J.
    Schaefer, L. F.
    Roberts, M. B.
    Haugen, I. K.
    Smith, S. E.
    Duryea, J.
    Price, L.
    Lu, B.
    McAlindon, T. E.
    OSTEOARTHRITIS AND CARTILAGE, 2018, 26 : S215 - S215
  • [37] Assessment of prevalent and incident vertebral fractures in osteoporosis research
    Genant, HK
    Jergas, M
    OSTEOPOROSIS INTERNATIONAL, 2003, 14 (Suppl 3) : S43 - S55
  • [38] The burden and determinants of fatigue in incident and prevalent systemic sclerosis
    Fairley, J. L.
    Hansen, D.
    Proudman, S.
    Baron, M.
    Sahhar, J.
    Ngian, G. -S.
    Walker, J.
    Host, L. V.
    Morrisroe, K.
    Stevens, W.
    Ross, L.
    Nikpour, M.
    CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 2024, 42 (08) : 1669 - 1674
  • [39] Assessment of prevalent and incident vertebral fractures in osteoporosis research
    H. K. Genant
    M. Jergas
    Osteoporosis International, 2003, 14 : 43 - 55
  • [40] Spatial relationships between prevalent and incident spine fractures
    Davis, JW
    Grove, JS
    Wasnich, RD
    Ross, PD
    BONE, 1999, 24 (03) : 261 - 264