Parameter Estimation of Heavy-Tailed Rayleigh Prior Model from Observed SAR Amplitude Images

被引:0
|
作者
Sun, Zengguo [1 ]
Narayanan, Ram M. [2 ]
Han, Chongzhao [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Shaanxi, Peoples R China
[2] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a new method for estimating the parameters of heavy-tailed Rayleigh prior model from the observed synthetic aperture radar (SAR) amplitude images. First, we change the multiplicative SAR image model into an additive one using logarithmic transformation. Next, we derive the expectation and variance of the log-transformed image using negative-order moments concept. Finally, we obtain the above quantities for two kinds of SAR amplitude images: the square-root of intensity image and the multi-look averaged amplitude image. Particularly for the latter, we derive the closed-form expressions for such expectation and variance based on the Gaussian approximation of the log-transformed speckle. Monte Carlo simulation results demonstrate that the proposed estimators, which are easy to implement with the analytical expressions, are efficient for the parameter estimation of the heavy-tailed Rayleigh prior model from the observed image.
引用
收藏
页码:360 / +
页数:2
相关论文
共 50 条
  • [41] Robust Bayesian hypocentre and uncertainty region estimation: the effect of heavy-tailed distributions and prior information in cases with poor, inconsistent and insufficient arrival times
    Martinsson, J.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2013, 192 (03) : 1156 - 1178
  • [42] The GA0 distribution model in edge-preserving parameter estimation of SAR images
    Jacobo-Berlles, J
    Mejail, M
    Frery, AC
    MATHEMATICAL MODELING AND ESTIMATION TECHNIQUES IN COMPUTER VISION, 1998, 3457 : 209 - 215
  • [43] Estimation of Value-at-Risk using mixture Copula Model for heavy-tailed Operational Risk losses in Financial, Insurance & Climatological Data
    Guharay, Sabyasachi
    Chang, K. C.
    Xu, Jie
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 2330 - 2337
  • [44] Joint Extreme Channels-Inspired Structure Extraction and Enhanced Heavy-Tailed Priors Heuristic Kernel Estimation for Motion Deblurring of Noisy and Blurry Images
    Zhao, Hongtian
    Zheng, Shibao
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (12) : 1520 - 1528
  • [45] Estimation of Water Physical Proprieties from SAR Images Using SPM model
    Shareef, M. A.
    Toumi, A.
    Khenchaf, A.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2015, : 1258 - 1261
  • [46] Internal wave detection and parameter estimation from SAR images based on a novel Radon transform method
    Chen, Biao
    Chen, Jie
    Sun, Jiyin
    2008 INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND TRAINING AND 2008 INTERNATIONAL WORKSHOP ON GEOSCIENCE AND REMOTE SENSING, VOL 1, PROCEEDINGS, 2009, : 234 - +
  • [47] AN IMPROVED SCHEME FOR PARAMETER ESTIMATION OF G0 DISTRIBUTION MODEL IN HIGH-RESOLUTION SAR IMAGES
    Cheng, Jianghua
    Gao, Gui
    Ding, Wenxia
    Ku, Xishu
    Sun, Jixiang
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 134 : 23 - 46
  • [48] Change detections from SAR images for damage estimation based on a spatial chaotic model
    Tzeng, Y. C.
    Chiu, S. H.
    Chen, Dana
    Chen, K. S.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1926 - +
  • [49] Optimal Model Parameter Estimation from EEG Power Spectrum Features Observed during General Anesthesia
    Meysam Hashemi
    Axel Hutt
    Laure Buhry
    Jamie Sleigh
    Neuroinformatics, 2018, 16 : 231 - 251
  • [50] Optimal Model Parameter Estimation from EEG Power Spectrum Features Observed during General Anesthesia
    Hashemi, Meysam
    Hutt, Axel
    Buhry, Laure
    Sleigh, Jamie
    NEUROINFORMATICS, 2018, 16 (02) : 231 - 251