The electronic properties of graphene

被引:20372
|
作者
Castro Neto, A. H. [1 ]
Guinea, F. [2 ]
Peres, N. M. R. [3 ]
Novoselov, K. S. [4 ]
Geim, A. K. [4 ]
机构
[1] Boston Univ, Dept Phys, Boston, MA 02215 USA
[2] CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain
[3] Univ Minho, Ctr Phys, P-4710057 Braga, Portugal
[4] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
carbon; electron-phonon interactions; nanostructured materials; quantum Hall effect; surface states; tight-binding calculations; tunnelling; SCANNING-TUNNELING-MICROSCOPY; DISORDERED DEGENERATE SEMICONDUCTORS; SELF-CONSISTENT THEORY; SPIN-ORBIT INTERACTION; DIRAC-FERMIONS; QUANTUM TRANSPORT; MAGNETIC-FIELDS; BAND-STRUCTURE; LANDAU-LEVELS; SYMMETRY-BREAKING;
D O I
10.1103/RevModPhys.81.109
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.
引用
收藏
页码:109 / 162
页数:54
相关论文
共 50 条
  • [1] Electronic properties of graphene
    Andrei, Eva Y.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [2] Electronic properties of graphene
    Novoselov, K. S.
    Morozov, S. V.
    Mohinddin, T. M. G.
    Ponomarenko, L. A.
    Elias, D. C.
    Yang, R.
    Barbolina, I. I.
    Blake, P.
    Booth, T. J.
    Jiang, D.
    Giesbers, J.
    Hill, E. W.
    Geim, A. K.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (11): : 4106 - 4111
  • [3] Electronic and structural properties of graphene
    Castro Neto, Antonio H.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [4] Electronic properties of rippled graphene
    Gui, Gui
    Zhong, Jianxin
    Ma, Zhenqiang
    [J]. IUPAP C20 CONFERENCE ON COMPUTATIONAL PHYSICS (CCP 2011), 2012, 402
  • [5] Electronic properties of epitaxial graphene
    Berger, Claire
    Veuillen, Jean-Yves
    Magaud, Laurence
    Mallet, Pierre
    Olevano, Valerio
    Orlita, M.
    Plochocka, P.
    Faugeras, C.
    Martinez, G.
    Potemski, Marek
    Naud, Cecile
    Levy, Laurent P.
    Mayou, Didier
    [J]. INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2010, 7 (4-8) : 383 - 402
  • [6] The electronic properties of bilayer graphene
    McCann, Edward
    Koshino, Mikito
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (05)
  • [7] Electronic Properties of Graphene Nanoribbons
    Lukomskaya, M., V
    Pavlovsky, O., V
    [J]. PHYSICS OF ATOMIC NUCLEI, 2020, 83 (11) : 1611 - 1614
  • [8] Electronic Properties of Graphene Nanoribbons
    M. V. Lukomskaya
    O. V. Pavlovsky
    [J]. Physics of Atomic Nuclei, 2020, 83 : 1611 - 1614
  • [9] Tuneable electronic properties in graphene
    Craciun, M. F.
    Russo, S.
    Yamamoto, M.
    Tarucha, S.
    [J]. NANO TODAY, 2011, 6 (01) : 42 - 60
  • [10] Electronic properties of graphene nanostructures
    Molitor, F.
    Guettinger, J.
    Stampfer, C.
    Droescher, S.
    Jacobsen, A.
    Ihn, T.
    Ensslin, K.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (24)