Hierarchical clustering for boxplot variables

被引:3
|
作者
Arroyo, Javier [1 ]
Mate, Carlos [2 ]
Roque, Antonio Munoz-San [2 ]
机构
[1] Univ Complutense Madrid, Dept Sistemas Informat, Prof Garcia Santesmases S-N, E-28040 Madrid, Spain
[2] Univ Pontificia Comillas, ETSI ICAI, Inst Invest Tecnol, E-28015 Madrid, Spain
关键词
D O I
10.1007/3-540-34416-0_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Boxplots are well-known exploratory charts used to extract meaningful information from batches of data at a glance. Their strength lies in their ability to summarize data retaining the key information, which also is a desirable property of symbolic variables. In this paper, boxplots are presented as a new kind of symbolic variable. In addition, two different approaches to measure distances between boxplot variables are proposed. The usefulness of these distances is illustrated by means of a hierarchical clustering of boxplot data.
引用
收藏
页码:59 / +
页数:2
相关论文
共 50 条
  • [21] Nomclust 2.0: an R package for hierarchical clustering of objects characterized by nominal variables
    Sulc, Zdenek
    Cibulkova, Jana
    Rezankova, Hana
    COMPUTATIONAL STATISTICS, 2022, 37 (05) : 2161 - 2184
  • [22] Curve Boxplot: Generalization of Boxplot for Ensembles of Curves
    Mirzargar, Mahsa
    Whitaker, Ross T.
    Kirby, Robert M.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) : 2654 - 2663
  • [23] Hierarchical Clustering via Sketches and Hierarchical Correlation Clustering
    Vainstein, Danny
    Chatziafratis, Vaggos
    Citovsky, Gui
    Rajagopalan, Anand
    Mahdian, Mohammad
    Azar, Yossi
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 559 - +
  • [24] Incremental Clustering for Hierarchical Clustering
    Narita, Kakeru
    Hochin, Teruhisa
    Nomiya, Hiroki
    2018 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE/ INTELLIGENCE AND APPLIED INFORMATICS (CSII 2018), 2018, : 102 - 107
  • [25] Paralinear distance and its algorithm for hierarchical clustering of high-dimensional discrete variables
    Wang, Shuai
    Hao, Lizhu
    Wang, Xiaofei
    Guo, Jianhua
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2024, 167
  • [26] CHALLENGES IN USING HIERARCHICAL CLUSTERING TO IDENTIFY ASTHMA SUBTYPES: CHOOSING THE VARIABLES AND VARIABLE TRANSFORMATION
    Deliu, M.
    Yavuz, S.
    Sperrin, M.
    Belgrave, D.
    Sackesen, C.
    Sahiner, U.
    Custovic, A.
    Kalayci, O.
    THORAX, 2016, 71 : A148 - A148
  • [27] Revised boxplot based discretization as the kernel of automatic interpretation of classes using numerical variables
    Gibert, Karina
    Perez-Bonilla, Alejandra
    DATA SCIENCE AND CLASSIFICATION, 2006, : 229 - +
  • [28] Affinity Clustering: Hierarchical Clustering at Scale
    Bateni, MohammadHossein
    Behnezhad, Soheil
    Derakhshan, Mahsa
    Hajiaghayi, MohammadTaghi
    Kiveris, Raimondas
    Lattanzi, Silvio
    Mirrokni, Vahab
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [29] SOME IMPLEMENTATIONS OF THE BOXPLOT
    FRIGGE, M
    HOAGLIN, DC
    IGLEWICZ, B
    AMERICAN STATISTICIAN, 1989, 43 (01): : 50 - 54
  • [30] BIVARIATE EXTENSIONS OF THE BOXPLOT
    GOLDBERG, KM
    IGLEWICZ, B
    TECHNOMETRICS, 1992, 34 (03) : 307 - 320