Hierarchical clustering for boxplot variables

被引:3
|
作者
Arroyo, Javier [1 ]
Mate, Carlos [2 ]
Roque, Antonio Munoz-San [2 ]
机构
[1] Univ Complutense Madrid, Dept Sistemas Informat, Prof Garcia Santesmases S-N, E-28040 Madrid, Spain
[2] Univ Pontificia Comillas, ETSI ICAI, Inst Invest Tecnol, E-28015 Madrid, Spain
关键词
D O I
10.1007/3-540-34416-0_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Boxplots are well-known exploratory charts used to extract meaningful information from batches of data at a glance. Their strength lies in their ability to summarize data retaining the key information, which also is a desirable property of symbolic variables. In this paper, boxplots are presented as a new kind of symbolic variable. In addition, two different approaches to measure distances between boxplot variables are proposed. The usefulness of these distances is illustrated by means of a hierarchical clustering of boxplot data.
引用
收藏
页码:59 / +
页数:2
相关论文
共 50 条
  • [1] Boxplot for circular variables
    Ali H. Abuzaid
    Ibrahim B. Mohamed
    Abdul G. Hussin
    Computational Statistics, 2012, 27 : 381 - 392
  • [2] Boxplot for circular variables
    Abuzaid, Ali H.
    Mohamed, Ibrahim B.
    Hussin, Abdul G.
    COMPUTATIONAL STATISTICS, 2012, 27 (03) : 381 - 392
  • [3] Regularized boxplot via convex clustering
    Choi, Hosik
    Poythress, J. C.
    Park, Cheolwoo
    Jeon, Jong-June
    Park, Changyi
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (07) : 1227 - 1247
  • [4] Insights in Hierarchical Clustering of Variables for Compositional Data
    Martin-Fernandez, Josep Antoni
    Donato, Valentino Di
    Pawlowsky-Glahn, Vera
    Egozcue, Juan Jose
    MATHEMATICAL GEOSCIENCES, 2024, 56 (03) : 415 - 435
  • [5] Insights in Hierarchical Clustering of Variables for Compositional Data
    Josep Antoni Martín-Fernández
    Valentino Di Donato
    Vera Pawlowsky-Glahn
    Juan José Egozcue
    Mathematical Geosciences, 2024, 56 : 415 - 435
  • [6] Agglomerative hierarchical clustering for selecting valid instrumental variables
    Apfel, Nicolas
    Liang, Xiaoran
    JOURNAL OF APPLIED ECONOMETRICS, 2024, 39 (07) : 1201 - 1219
  • [7] Hierarchical clustering of variables: A comparison among strategies of analysis
    Soffritti, G
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1999, 28 (04) : 977 - 999
  • [8] Localized prediction of continuous target variables using hierarchical clustering
    Lazarevic, A
    Kanapady, R
    Kamath, C
    Kumar, V
    Tamma, K
    THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2003, : 139 - 146
  • [9] Agglomerative hierarchical clustering of continuous variables based on mutual information
    Kojadinovic, I
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 46 (02) : 269 - 294
  • [10] Comparison of single and complete linkage clustering with the hierarchical factor classification of variables
    S. Camiz
    V. D. Pillar
    Community Ecology, 2007, 8 : 25 - 30