A Fully Nonparametric Modeling Approach to Binary Regression

被引:13
|
作者
DeYoreo, Maria [1 ]
Kottas, Athanasios [2 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
来源
BAYESIAN ANALYSIS | 2015年 / 10卷 / 04期
基金
美国国家科学基金会;
关键词
Bayesian nonparametrics; Dirichlet process mixture model; identifiability; Markov chain Monte Carlo; ordinal regression; BAYESIAN-ANALYSIS; LOGISTIC-REGRESSION; NATURAL-SELECTION; SAMPLING METHODS; DIRICHLET; INFERENCE; MIXTURES;
D O I
10.1214/15-BA963SI
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a general nonparametric Bayesian framework for binary regression, which is built from modeling for the joint response-covariate distribution. The observed binary responses are assumed to arise from underlying continuous random variables through discretization, and we model the joint distribution of these latent responses and the covariates using a Dirichlet process mixture of multivariate normals. We show that the kernel of the induced mixture model for the observed data is identifiable upon a restriction on the latent variables. To allow for appropriate dependence structure while facilitating identifiability, we use a square-root-free Cholesky decomposition of the covariance matrix in the normal mixture kernel. In addition to allowing for the necessary restriction, this modeling strategy provides substantial simplifications in implementation of Markov chain Monte Carlo posterior simulation. We present two data examples taken from areas for which the methodology is especially well suited. In particular, the first example involves estimation of relationships between environmental variables, and the second develops inference for natural selection surfaces in evolutionary biology. Finally, we discuss extensions to regression settings with ordinal responses.
引用
收藏
页码:821 / 847
页数:27
相关论文
共 50 条
  • [31] On some ridge regression estimators: a nonparametric approach
    Saleh, A. K. Md E.
    Kibria, B. M. Golam
    JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (03) : 819 - 851
  • [32] A Bayesian Nonparametric Approach to Inference for Quantile Regression
    Taddy, Matthew A.
    Kottas, Athanasios
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2010, 28 (03) : 357 - 369
  • [33] Fully Nonparametric Regression for Bounded Data Using Dependent Bernstein Polynomials
    Barrientos, Andres F.
    Jara, Alejandro
    Quintana, Fernando A.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 806 - 825
  • [34] Bayesian time series regression with nonparametric modeling of autocorrelation
    Tanujit Dey
    Kun Ho Kim
    Chae Young Lim
    Computational Statistics, 2018, 33 : 1715 - 1731
  • [35] Benchmark Dose Analysis via Nonparametric Regression Modeling
    Piegorsch, Walter W.
    Xiong, Hui
    Bhattacharya, Rabi N.
    Lin, Lizhen
    RISK ANALYSIS, 2014, 34 (01) : 135 - 151
  • [36] Flexible modeling based on copulas in nonparametric median regression
    Braekers, Roel
    Van Keilegom, Ingrid
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (06) : 1270 - 1281
  • [37] Regression modeling for nonparametric estimation of distribution and quantile functions
    Cheng, MY
    Peng, L
    STATISTICA SINICA, 2002, 12 (04) : 1043 - 1060
  • [38] Bayesian time series regression with nonparametric modeling of autocorrelation
    Dey, Tanujit
    Kim, Kun Ho
    Lim, Chae Young
    COMPUTATIONAL STATISTICS, 2018, 33 (04) : 1715 - 1731
  • [39] qgam: Bayesian Nonparametric Quantile Regression Modeling in R
    Fasiolo, Matteo
    Wood, Simon N.
    Zaffran, Margaux
    Nedellec, Raphael
    Goude, Yannig
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (09): : 1 - 31
  • [40] Fully statistical approach for regression analysis
    Logofatu, Petre Catalin
    Apostol, Dan
    MEASUREMENT, 2008, 41 (10) : 1100 - 1104