A Fully Nonparametric Modeling Approach to Binary Regression

被引:13
|
作者
DeYoreo, Maria [1 ]
Kottas, Athanasios [2 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
来源
BAYESIAN ANALYSIS | 2015年 / 10卷 / 04期
基金
美国国家科学基金会;
关键词
Bayesian nonparametrics; Dirichlet process mixture model; identifiability; Markov chain Monte Carlo; ordinal regression; BAYESIAN-ANALYSIS; LOGISTIC-REGRESSION; NATURAL-SELECTION; SAMPLING METHODS; DIRICHLET; INFERENCE; MIXTURES;
D O I
10.1214/15-BA963SI
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a general nonparametric Bayesian framework for binary regression, which is built from modeling for the joint response-covariate distribution. The observed binary responses are assumed to arise from underlying continuous random variables through discretization, and we model the joint distribution of these latent responses and the covariates using a Dirichlet process mixture of multivariate normals. We show that the kernel of the induced mixture model for the observed data is identifiable upon a restriction on the latent variables. To allow for appropriate dependence structure while facilitating identifiability, we use a square-root-free Cholesky decomposition of the covariance matrix in the normal mixture kernel. In addition to allowing for the necessary restriction, this modeling strategy provides substantial simplifications in implementation of Markov chain Monte Carlo posterior simulation. We present two data examples taken from areas for which the methodology is especially well suited. In particular, the first example involves estimation of relationships between environmental variables, and the second develops inference for natural selection surfaces in evolutionary biology. Finally, we discuss extensions to regression settings with ordinal responses.
引用
收藏
页码:821 / 847
页数:27
相关论文
共 50 条
  • [1] A Bayesian approach to robust binary nonparametric regression
    Wood, S
    Kohn, R
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 203 - 213
  • [2] NONPARAMETRIC BINARY REGRESSION - A BAYESIAN-APPROACH
    DIACONIS, P
    FREEDMAN, DA
    ANNALS OF STATISTICS, 1993, 21 (04): : 2108 - 2137
  • [3] Spatial variation in risk of disease: a nonparametric binary regression approach
    Kelsall, JE
    Diggle, PJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1998, 47 : 559 - 573
  • [4] NONPARAMETRIC BINARY REGRESSION WITHOUT REPLICATION
    KAPPENMAN, RF
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1988, 7 (02) : 119 - 125
  • [5] Locally adaptive nonparametric binary regression
    Wood, Sally A.
    Kohn, Robert
    Cottet, Remy
    Jiang, Wenxin
    Tanner, Martin
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (02) : 352 - 372
  • [6] Nonparametric wavelet regression for binary response
    Antoniadis, A
    Leblanc, F
    STATISTICS, 2000, 34 (03) : 183 - 213
  • [7] Bootstrapping: A nonparametric approach to identify the effect of sparsity of data in the binary regression models
    Department of Statistics, Shahid Chamran University, Ahvaz, Iran
    J. Appl. Sci., 2008, 17 (2991-2997):
  • [8] QUANTILE REGRESSION - A NONPARAMETRIC APPROACH
    LEJEUNE, MG
    SARDA, P
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1988, 6 (03) : 229 - 239
  • [9] Bayesian Nonparametric ROC Regression Modeling
    Inacio de Carvalho, Vanda
    Jara, Alejandro
    Hanson, Timothy E.
    de Carvalho, Miguel
    BAYESIAN ANALYSIS, 2013, 8 (03): : 623 - 645
  • [10] Nonparametric smoothing in modeling logistic regression
    Lin, Kuo-Chin
    Chen, Yi-Ju
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2006, 9 (02): : 381 - 395