Effect of different conditions on the combustion interactions of blended coals in O2/CO2 mixtures

被引:24
|
作者
Ma, Lun [1 ]
Wang, Tingxu [1 ]
Liu, Jichang [1 ]
Fang, Qingyan [1 ]
Guo, Anlong [1 ]
Zhang, Cheng [1 ]
Chen, Gang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Blended coal; Oxy-fuel combustion; Combustion interactions; Thermo-gravimetric analysis; OXY-FUEL COMBUSTION; PULVERIZED-COAL; TECHNOLOGY; REACTIVITY; IGNITION; BURNOUT; CARBON;
D O I
10.1016/j.joei.2018.05.006
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The combination of oxy-fuel and blended-coal combustion may be one of these effective methods to both reduce CO2 emissions and improve energy utilization efficiency in coal-fired power stations. The aim of this study is to investigate oxy-fuel combustion interactions of blended coals under different conditions using a thermo-gravimetric analyzer. The results show that compared with those in an O-2/N-2 mixture, the promotive and inhibitive effect and the comprehensive interactions are considerably weaker in an O-2/CO2 mixture. In the O-2/CO2 mixture, both increasing the O-2 concentration and decreasing the particle size result in decreasing the promotive effect but increasing the inhibitive effect and the comprehensive interactions, which increase the non-additive combustion characteristics. Enhancement of the heating rate increases the promotive effect but decreases the inhibitive effect and the comprehensive interactions, which weaken the non-additive combustion characteristics. Of these factors, the effects of the oxygen concentration and heating rate on comprehensive interactions are greater than that of particle size. This study provides useful information for the design and optimization of thermo-chemical conversion systems of coal blends in the O-2/CO2 atmosphere. (C) 2018 Energy Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:413 / 427
页数:15
相关论文
共 50 条
  • [31] Physical Properties of Particulate Matter Emitted from Combustion of Coals of Various Ranks in O2/N2 and O2/CO2 Environments
    Kazanc, Feyza
    Levendis, Yiannis A.
    ENERGY & FUELS, 2012, 26 (12) : 7127 - 7139
  • [32] Effect of different concentrations of O2 under inert and CO2 atmospheres on the swine manure combustion process
    Lopez-Gonzalez, D.
    Parascanu, M. M.
    Fernandez-Lopez, M.
    Puig-Gamero, M.
    Soreanu, G.
    Avalos-Ramirez, A.
    Valverde, J. L.
    Sanchez-Silva, L.
    FUEL, 2017, 195 : 23 - 32
  • [33] Effect of H2O on Preheating Combustion Characteristics in O2/CO2 and O2/N2 Atmospheres
    Pan, Fei
    Zhu, Jianguo
    Liu, Jingzhang
    Liu, Yuhua
    JOURNAL OF THERMAL SCIENCE, 2023, 32 (06) : 2235 - 2242
  • [34] Effect of H2O on Preheating Combustion Characteristics in O2/CO2 and O2/N2 Atmospheres
    Fei Pan
    Jianguo Zhu
    Jingzhang Liu
    Yuhua Liu
    Journal of Thermal Science, 2023, 32 : 2235 - 2242
  • [35] Vibrational-Chemical Coupling in mixtures CO2/CO/O and CO2/CO/O2/O/C
    Kosareva, A. A.
    Nagnibeda, E. A.
    10TH INTERNATIONAL CONFERENCE ON AEROPHYSICS AND PHYSICAL MECHANICS OF CLASSICAL AND QUANTUM SYSTEMS, 2017, 815
  • [36] Effect of H2O on Preheating Combustion Characteristics in O2/CO2 and O2/N2 Atmospheres
    PAN Fei
    ZHU Jianguo
    LIU Jingzhang
    LIU Yuhua
    Journal of Thermal Science, 2023, 32 (06) : 2235 - 2242
  • [37] Preheating and combustion characteristics of anthracite under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres
    Zhang, Xiaoyu
    Zhu, Shujun
    Zhu, Jianguo
    Liu, Yuhua
    Zhang, Jiahang
    Hui, Jicheng
    Ding, Hongliang
    Cao, Xiaoyang
    Lyu, Qinggang
    ENERGY, 2023, 274
  • [38] The 1.27-μm O2 continuum absorption in O2/CO2 mixtures
    Fraser, GT
    Lafferty, WJ
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D23) : 31749 - 31753
  • [39] Kinetics of CO2 gasification for coals of different ranks under oxy-combustion conditions
    Gonzalo-Tirado, Cristina
    Jimenez, Santiago
    Ballester, Javier
    COMBUSTION AND FLAME, 2013, 160 (02) : 411 - 416
  • [40] Effect of water vapor on direct sulfation during O2/CO2 combustion
    Duan, L.-B. (duanlunbo@seu.edu.cn), 1600, Science Press (34):