Equation of state of γ-tricalcium phosphate, γ-Ca3(PO4)2, to lower mantle pressures

被引:22
|
作者
Zhai, Shuangmeng [1 ]
Liu, Xi [1 ]
Shieh, Sean R. [2 ]
Zhang, Lifei [1 ]
Ito, Eiji [3 ]
机构
[1] Peking Univ, Sch Earth & Space Sci, MOE, Key Lab Orogen Belts & Crustal Evolut, Beijing 100871, Peoples R China
[2] Univ Western Ontario, Dept Earth Sci, London, ON N6A 5B7, Canada
[3] Okayama Univ, Inst Study Earths Interior, Misasa, Tottori 6820193, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
gamma-Ca-3(PO4)(2); equation of state; synchrotron X-ray diffraction; high pressure; HIGH-TEMPERATURE; DENSE POLYMORPH; COMPRESSIBILITY; CA3(PO4)2; PHASE;
D O I
10.2138/am.2009.3160
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The gamma-tricalcium phosphate phase (gamma-TCP), gamma-Ca-3(PO4)(2), is a high-pressure polymorph of tricalcium phosphate with a potential important implication as the reservoir of rare-earth elements and very large lithophile elements in the deep mantle. In situ synchrotron X-ray diffraction measurements of the gamma-TCP phase have been carried out using a diamond-anvil cell to 40.29 GPa at room temperature, with a methanol-ethanol mixture as the pressure medium. The pressures in the measurements have been determined by using gold metal as the internal pressure calibrant. The third-order Birch-Murnaghan equation of state fitted to the experimentally defined unit-cell parameters suggests for the gamma-TCP phase a density of rho(0) = 3.46 1 (1) g/cm(3), an isothermal bulk modulus of K-T = 100.2(13) GPa, and first pressure derivative of K-T' = 5.48(16). When K-T' is fixed at 4, the derived K-T is 113.1(12) GPa.
引用
收藏
页码:1388 / 1391
页数:4
相关论文
共 50 条
  • [31] Biology properties of degradable β-Ca3(PO4)2 ceramic
    Yan, Yuhua
    Xu, Yuan
    Dai, Honglian
    Wuhan Gongye Daxue Xuebao/Journal of Wuhan University of Technology, 1995, 17 (04):
  • [32] STRUCTURAL RELATIONSHIP OF WHITLOCKITE AND BETA CA3(PO4)2
    GOPAL, R
    CALVO, C
    NATURE-PHYSICAL SCIENCE, 1972, 237 (71): : 30 - &
  • [34] Preparation of β-Ca3(PO4)2/Poly(D,L-lactide) and β-Ca3(PO4)2/Poly(ε-caprolactone) Biocomposite Implants for Bone Substitution
    Zuev, D. M.
    Klimashina, E. S.
    Evdokimov, P. V.
    Filippov, Ya. Yu.
    Putlyaev, V. I.
    INORGANIC MATERIALS, 2018, 54 (01) : 87 - 95
  • [35] Sol–Gel Synthesis of Ca3(PO4)2 and Ca3– xNa2x(PO4)2 Powders for the Fabrication of Bioceramics by 3D Printing
    D. S. Larionov
    V. A. Bitanova
    P. V. Evdokimov
    A. V. Garshev
    V. I. Putlyaev
    Inorganic Materials, 2022, 58 : 302 - 310
  • [36] In vitro behavior of α-tricalcium phosphate doped with dicalcium silicate in the system Ca2SiO4-Ca3(PO4)2
    Martinez, I. M.
    Meseguer-Olmo, L.
    Bernabeu-Esclapez, A.
    Velasquez, P. A.
    De Aza, P. N.
    MATERIALS CHARACTERIZATION, 2012, 63 : 47 - 55
  • [37] Preparation of β-Ca3(PO4)2/Poly(D,L-lactide) and β-Ca3(PO4)2/Poly(ε-caprolactone) Biocomposite Implants for Bone Substitution
    D. M. Zuev
    E. S. Klimashina
    P. V. Evdokimov
    Ya. Yu. Filippov
    V. I. Putlyaev
    Inorganic Materials, 2018, 54 : 87 - 95
  • [38] Effect of MgO on Vacuum Carbothermal Reduction Mechanism of Ca3(PO4)2 in SiO2–C–Ca3(PO4)2–MgO-Based System
    Miao Li
    Renlin Zhu
    Run Huang
    Xianfen Li
    Xiaodong Lv
    Jing Yang
    Xue Deng
    Xianze Long
    Journal of Sustainable Metallurgy, 2023, 9 : 1429 - 1443
  • [39] Determination of precise unit-cell parameters of the α-tricalcium phosphate Ca3(PO4)2 through high-resolution synchrotron powder diffraction
    Yashima, Masatomo
    Kawaike, Yoichi
    Tanaka, Masahiko
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (01) : 272 - 274
  • [40] Comparison between the reactivity of α- and β-Ca3(PO4)2 in the presence of aqueous solution of dihydrogen phosphate salt
    Nishino, T
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 1998, 106 (06) : 596 - 599