Dynamics of the periodic type-K competitive Kolmogorov systems

被引:17
|
作者
Gyllenberg, M
Wang, Y [1 ]
机构
[1] Univ Turku, Dept Math, FIN-20014 Turku, Finland
[2] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
time-periodic type-K competitive system; Poincare map; persistence; invariant order decomposition; exponential separation; Pesin's theory;
D O I
10.1016/j.jde.2004.06.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For time-periodic dissipative and irreducible type-K competitive Kolmogorov systems, it is proved that there is a canonically defined countable family F of unordered, disjoint invariant sets with the property that, for every persistent trajectory whose omega-limit set is not a cycle, there exists a unique trajectory in some element of F such that these two trajectories are asymptotic and the corresponding points in these two trajectories are K-related. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:50 / 76
页数:27
相关论文
共 50 条
  • [31] INVARIANTS OF BIPARTITE KNESER B TYPE-k GRAPHS
    Jayakumar, C.
    Sreekumar, K.G.
    Manilal, K.
    Cangul, Ismail Naci
    arXiv,
  • [32] HETEROCLINIC LIMIT CYCLES IN COMPETITIVE KOLMOGOROV SYSTEMS
    Hou, Zhanyuan
    Baigent, Stephen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) : 4071 - 4093
  • [33] On the Dynamics of a Class of Kolmogorov Systems
    Boukoucha, Rachid
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2016, 9 (01): : 11 - 16
  • [34] ON THE DYNAMICS OF A CLASS OF KOLMOGOROV SYSTEMS
    Boukoucha, R.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 734 - 739
  • [35] On the dynamics of a class of Kolmogorov systems
    Llibre, Jaume
    Salhi, Tayeb
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 : 242 - 245
  • [36] TRIC TYPE-K, A NEW IMMUNOLOGICAL TYPE OF CHLAMYDIA-TRACHOMATIS
    KUO, CC
    WANG, SP
    GRAYSTON, JT
    ALEXANDE.ER
    JOURNAL OF IMMUNOLOGY, 1974, 113 (02): : 591 - 596
  • [37] Coexistence states for periodic planar Kolmogorov systems
    Battauz, Anna
    Nonlinear Analysis, Theory, Methods and Applications, 1999, 37 (06): : 735 - 749
  • [38] Ergodicity conditions for Kolmogorov almost periodic systems
    Perov, AI
    DOKLADY MATHEMATICS, 2001, 64 (02) : 143 - 146
  • [39] Coexistence states for periodic planar Kolmogorov systems
    Battauz, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (06) : 735 - 749
  • [40] THE TRANSITION ZONE BETWEEN AGGREGATE AND TYPE-K EXPANSIVE CEMENT
    MONTEIRO, PJM
    MEHTA, PK
    CEMENT AND CONCRETE RESEARCH, 1986, 16 (01) : 111 - 114