Local exact controllability of the two-dimensional Navier-Stokes equations

被引:19
|
作者
Fursikov, AV
Emanuilov, OY
机构
关键词
D O I
10.1070/SM1996v187n09ABEH000160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of R(2) be a bounded domain with boundary partial derivative Omega consisting of two disjoint closed curves Gamma(0) and Gamma(1) such that Gamma(0) is connected and Gamma(1) not equal empty set . The Navier-Stokes system partial derivative(t) upsilon(t, x) - Delta upsilon + (upsilon, del)upsilon + del p = f(t, x), div upsilon = 0 is considered in Omega with boundary and initial conditions (upsilon, nu)\(Gamma 0) = rot upsilon\(Gamma 0) = 0 and upsilon\(t = 0) = upsilon(0)(x) (here t is an element of (0, T), x is an element of Omega, and nu is the outward normal to Gamma(0)) Let <(v)over cap (t, x)> be a solution of this system such that <(upsilon)over cap> satisfies the indicated boundary conditions on Gamma(0) and \\<(upsilon)over cap (0, .)> - upsilon(0)\\w(22(Omega)) < epsilon, where epsilon = <epsilon((upsilon))over cap> much less than 1. Then the existence of a control u(t,x) on (0,T) x Gamma(1) with the following properties is proved: the solution upsilon(t,x) of the Navier-Stokes system such that (upsilon, nu)\Gamma(0) = rot upsilon\(Gamma 0) = 0, upsilon\(t = 0) = upsilon(0)(x), and upsilon\(Gamma 1) = u coincides with <(upsilon)over cap (T, .)> for t = T, that is, upsilon(T, x) = <(upsilon)over cap (T,x)>. In particular, if f and <(upsilon)over cap> do not depend on t and <(upsilon)over cap (x)> is an unstable steady-state solution, then it follows from the above result that one can suppress the occurrence of turbulence by some control alpha On Gamma(1). An analogous result is established in the case when Gamma(0) = partial derivative Omega and alpha(t,x) is a distributed control concentrated in an arbitrary subdomain omega subset of Omega.
引用
收藏
页码:1355 / 1390
页数:36
相关论文
共 50 条
  • [21] On the Numerical Controllability of the Two-Dimensional Heat, Stokes and Navier–Stokes Equations
    Enrique Fernández-Cara
    Arnaud Münch
    Diego A. Souza
    [J]. Journal of Scientific Computing, 2017, 70 : 819 - 858
  • [22] Local Exact Controllability for the One-Dimensional Compressible Navier-Stokes Equation
    Ervedoza, Sylvain
    Glass, Olivier
    Guerrero, Sergio
    Puel, Jean-Pierre
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (01) : 189 - 238
  • [23] Exact controllability for the three-dimensional Navier-Stokes equations with the Navier slip boundary conditions
    Havârneanu, T
    Popa, C
    Sritharan, SS
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (05) : 1303 - 1350
  • [24] FUZZY SOLUTIONS FOR TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Chen, Y. -Y.
    Hsiao, R. -J.
    Huang, M. -C.
    [J]. JOURNAL OF MECHANICS, 2018, 34 (01) : 1 - 10
  • [25] On the two-dimensional aperture problem for Navier-Stokes equations
    Nazarov, SA
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (06): : 699 - 703
  • [26] A probabilistic approach to the two-dimensional Navier-Stokes equations
    Busnello, B
    [J]. ANNALS OF PROBABILITY, 1999, 27 (04): : 1750 - 1780
  • [27] On the two-dimensional compressible isentropic Navier-Stokes equations
    Giacomoni, C
    Orenga, P
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (06): : 1091 - 1109
  • [28] Turnpike Property for Two-Dimensional Navier-Stokes Equations
    Zamorano, Sebastian
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (03) : 869 - 888
  • [29] On controllability of the Navier-Stokes equations
    Fursikov, AV
    [J]. FUNDAMENTAL PROBLEMATIC ISSUES IN TURBULENCE, 1999, : 51 - 56
  • [30] ON EXACT BOUNDARY ZERO-CONTROLLABILITY OF 2-DIMENSIONAL NAVIER-STOKES EQUATIONS
    FURSIKOV, AV
    IMANUVILOV, OY
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1994, 37 (1-2) : 67 - 76