An upper bound for the real tensor rank and the real symmetric tensor rank in terms of the complex ranks

被引:4
|
作者
Ballico, E. [1 ]
机构
[1] Univ Trent, Dept Math, Povo, TN, Italy
来源
LINEAR & MULTILINEAR ALGEBRA | 2014年 / 62卷 / 11期
关键词
symmetric tensor rank; tensor rank; Segre variety; Veronese variety; real rank; finite field;
D O I
10.1080/03081087.2013.839671
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix a real tensor T of format (m(1),..., m(s)). Here we prove that its real tensor rank is at most s times its complex tensor rank. A similar bound is true for symmetric tensors and for any perfect field (e.g. a finite field).
引用
收藏
页码:1546 / 1552
页数:7
相关论文
共 50 条
  • [21] Bounds on the tensor rank
    Ballico, Edoardo
    Bernardi, Alessandra
    Chiantini, Luca
    Guardo, Elena
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (06) : 1771 - 1785
  • [22] The Complexity of Tensor Rank
    Marcus Schaefer
    Daniel Štefankovič
    Theory of Computing Systems, 2018, 62 : 1161 - 1174
  • [23] On the rank of a Latin tensor
    Shitov, Yaroslav
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 : 299 - 305
  • [24] The Complexity of Tensor Rank
    Schaefer, Marcus
    Stefankovic, Daniel
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (05) : 1161 - 1174
  • [25] Bounds on the tensor rank
    Edoardo Ballico
    Alessandra Bernardi
    Luca Chiantini
    Elena Guardo
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1771 - 1785
  • [26] Partially symmetric tensor rank: the description of the non-uniqueness case for low rank
    Ballico, E.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (03): : 608 - 624
  • [27] Iterative tensor eigen rank minimization for low-rank tensor completion
    Su, Liyu
    Liu, Jing
    Tian, Xiaoqing
    Huang, Kaiyu
    Tan, Shuncheng
    INFORMATION SCIENCES, 2022, 616 : 303 - 329
  • [28] Tensor Q-rank: new data dependent definition of tensor rank
    Kong, Hao
    Lu, Canyi
    Lin, Zhouchen
    MACHINE LEARNING, 2021, 110 (07) : 1867 - 1900
  • [29] Tensor Q-rank: new data dependent definition of tensor rank
    Hao Kong
    Canyi Lu
    Zhouchen Lin
    Machine Learning, 2021, 110 : 1867 - 1900
  • [30] On non-commutative rank and tensor rank
    Derksen, Harm
    Makam, Visu
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (06): : 1069 - 1084