Robust Moderately Clipped LASSO for Simultaneous Outlier Detection and Variable Selection

被引:0
|
作者
Peng, Yang [1 ]
Luo, Bin [2 ]
Gao, Xiaoli [1 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Greensboro, NC 27412 USA
[2] Duke Univ, Dept Biostat & Bioinformat, Durham, NC USA
关键词
Outlier detection; Variable selection; Robust regression; High-dimensional data; MCL; Convex-concave; ADAPTIVE LASSO; REGRESSION;
D O I
10.1007/s13571-022-00279-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Outlier detection has become an important and challenging issue in high-dimensional data analysis due to the coexistence of data contamination and high-dimensionality. Most existing widely used penalized least squares methods are sensitive to outliers due to the l(2) loss. In this paper, we proposed a Robust Moderately Clipped LASSO (RMCL) estimator, that performs simultaneous outlier detection, variable selection and robust estimation. The RMCL estimator can be efficiently solved using the coordinate descent algorithm in a convex-concave procedure. Our numerical studies demonstrate that the RMCL estimator possesses superiority in both variable selection and outlier detection and thus can be advantageous in difficult prediction problems with data contamination.
引用
收藏
页码:694 / 707
页数:14
相关论文
共 50 条
  • [41] Robust statistics for outlier detection
    Rousseeuw, Peter J.
    Hubert, Mia
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (01) : 73 - 79
  • [42] New adaptive lasso approaches for variable selection in automated pharmacovigilance signal detection
    Courtois, Emeline
    Tubert-Bitter, Pascale
    Ahmed, Ismail
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [43] Robust Local Outlier Detection
    Du, Haizhou
    Zhao, Shengjie
    Zhang, Daqiang
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 116 - 123
  • [44] Detection of outlier and a robust BP algorithm against outlier
    Zhao, WX
    Chen, DZ
    Hu, SX
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) : 1403 - 1408
  • [45] Multi-Objective Evolutionary Simultaneous Feature Selection and Outlier Detection for Regression
    Jimenez, Fernando
    Lucena-Sanchez, Estrella
    Sanchez, Gracia
    Sciavicco, Guido
    [J]. IEEE ACCESS, 2021, 9 : 135675 - 135688
  • [46] Variable Selection by Lasso-Type Methods
    Chand, Sohail
    Kamal, Shahid
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2011, 7 (02) : 451 - 464
  • [47] Selection of Tests for Outlier Detection
    Bossers, Harm C. M.
    Hurink, Johann L.
    Smit, Gerard J. M.
    [J]. 2013 IEEE 31ST VLSI TEST SYMPOSIUM (VTS), 2013,
  • [48] Lasso for Instrumental Variable Selection: A Replication Study
    Spindler, Martin
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2016, 31 (02) : 450 - 454
  • [49] The lasso method for variable selection in the cox model
    Tibshirani, R
    [J]. STATISTICS IN MEDICINE, 1997, 16 (04) : 385 - 395
  • [50] Dirichlet Lasso: A Bayesian approach to variable selection
    Das, Kiranmoy
    Sobel, Marc
    [J]. STATISTICAL MODELLING, 2015, 15 (03) : 215 - 232