On canonical curves and osculating spaces

被引:2
|
作者
Medeiros, N [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat, BR-24020005 Niteroi, RJ, Brazil
关键词
D O I
10.1016/S0022-4049(01)00073-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the geometry of a reduced canonical curve with a nondegenerate component. We prove that the other components are rational normal curves in a certain configuration. In addition, given a nonsingular point on a nondegenerate component, we analyze the relationship between the Weierstrass semigroup and the intersection divisors of the osculating spaces with the curve. We describe how these divisors vary and present an upper bound for their degrees. We study in detail the curves that attain this bound. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:267 / 285
页数:19
相关论文
共 50 条
  • [21] OSCULATING SPACES OF A CERTAIN CURVE IN [N]
    EDGE, WL
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1974, 19 (MAR) : 39 - 44
  • [22] Finslerian Viewpoint to the Rectifying, Normal and Osculating Curves
    Ozdemir, Zehra
    Ates, Fatma
    Ekmekci, F. Nejat
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2022, 15 (01): : 30 - 38
  • [23] Remarks on osculating linear spaces to projective varieties
    Ballico, E
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2004, 35 (01): : 123 - 126
  • [24] Remarks on osculating linear spaces to projective varieties
    E. Ballico*
    Bulletin of the Brazilian Mathematical Society, New Series, 2004, 35 : 123 - 126
  • [25] A NOTE ON SYMMETRICAL SELF-OSCULATING COUPLER CURVES
    HUNT, KH
    KIMBRELL, JE
    MECHANISM AND MACHINE THEORY, 1982, 17 (03) : 229 - 232
  • [26] Osculating Curves: Around the Tait-Kneser Theorem
    Ghys, Etienne
    Tabachnikov, Sergei
    Timorin, Vladlen
    MATHEMATICAL INTELLIGENCER, 2013, 35 (01): : 61 - 66
  • [27] Osculating Curves: Around the Tait-Kneser Theorem
    Étienne Ghys
    Sergei Tabachnikov
    Vladlen Timorin
    The Mathematical Intelligencer, 2013, 35 : 61 - 66
  • [28] The rationality of certain moduli spaces associated to half-canonical extremal curves
    Casnati, G
    Del Centina, A
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 141 (03) : 201 - 209
  • [29] The classifications of quaternionic osculating curves in Q4
    Yilmaz, Munevver Yildirim
    Kulahci, Mihriban
    GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (01) : 149 - 154
  • [30] On generalized osculating-type curves in Myller configuration
    Isbilir, Zehra
    Tosun, Murat
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (02): : 85 - 98