On canonical curves and osculating spaces

被引:2
|
作者
Medeiros, N [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat, BR-24020005 Niteroi, RJ, Brazil
关键词
D O I
10.1016/S0022-4049(01)00073-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the geometry of a reduced canonical curve with a nondegenerate component. We prove that the other components are rational normal curves in a certain configuration. In addition, given a nonsingular point on a nondegenerate component, we analyze the relationship between the Weierstrass semigroup and the intersection divisors of the osculating spaces with the curve. We describe how these divisors vary and present an upper bound for their degrees. We study in detail the curves that attain this bound. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:267 / 285
页数:19
相关论文
共 50 条
  • [1] Singular Curves of Low Degree and Multifiltrations from Osculating Spaces
    Buczynski, Jaroslaw
    Ilten, Nathan
    Ventura, Emanuele
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (21) : 8139 - 8182
  • [2] OSCULATING SPACES
    SCHERK, P
    CANADIAN JOURNAL OF MATHEMATICS, 1962, 14 (04): : 669 - &
  • [3] Osculating degeneration of curves
    González, S
    Mallavibarrena, R
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (08) : 3829 - 3845
  • [4] Osculating curves and surfaces
    Franklin, Philip
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1926, 28 (1-4) : 400 - 416
  • [5] Canonical bases and moduli spaces of sheaves on curves
    Schiffmann, Olivier
    INVENTIONES MATHEMATICAE, 2006, 165 (03) : 453 - 524
  • [6] Canonical bases and moduli spaces of sheaves on curves
    Olivier Schiffmann
    Inventiones mathematicae, 2006, 165 : 453 - 524
  • [7] ON THE OSCULATING SPACES OF SUBMANIFOLDS IN EUCLIDEAN SPACES
    Trencevski, Kostadin
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2012, 36 (01): : 45 - 49
  • [8] On the osculating bundles of curves in Pn
    Ballico, E
    JOURNAL OF ALGEBRA, 1998, 204 (02) : 483 - 492
  • [9] On the quaternionic osculating direction curves
    Kiziltug, Sezai
    Erisir, Tulay
    Mumcu, Gokhan
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (04)
  • [10] A recursive formula for osculating curves
    Muratore, Giosue
    ARKIV FOR MATEMATIK, 2021, 59 (01): : 195 - 211