A multiplicative weighted L2-norm total variation regularization for deblurring algorithms

被引:0
|
作者
Abubakar, A [1 ]
van den Berg, PM [1 ]
机构
[1] Delft Univ Technol, Ctr Tech Geosci, NL-2628 CD Delft, Netherlands
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper a new deblurring algorithms for a special deconvolution problem, where a parameter describes the degree of blurring, is considered. The algorithm is based on a Conjugate Gradient technique and used the recently developed weighted l(2)(Omega)-norm Total Variation regularizer to obtain a reasonable solution. In order to avoid the necessity of determining the appropriate regularization parameter for this TV regularizer, this TV regularizer is included as a multiplicative constraint. In this way the appropriate regularization parameter is determined by the deblurring process itself. Numerical test shows that the proposed algorithm works very effective.
引用
收藏
页码:3545 / 3548
页数:4
相关论文
共 50 条
  • [31] Exact L2-norm plane separation
    Audet, Charles
    Hansen, Pierre
    Karam, Alejandro
    Ng, Chi To
    Perron, Sylvain
    OPTIMIZATION LETTERS, 2008, 2 (04) : 483 - 495
  • [32] Sparseness via L2-norm minimization?
    Marti-Lopez, F.
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 687 - 691
  • [33] An iteratively reweighted norm algorithm for Total Variation regularization
    Rodriguez, Paul
    Wohlberg, Brendt
    2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, : 892 - +
  • [34] Weighted-l1-method-noise regularization for image deblurring
    Yang, Chunyu
    Wang, Weiwei
    Feng, Xiangchu
    Liu, Xin
    SIGNAL PROCESSING, 2019, 157 : 14 - 24
  • [35] Image Deblurring by Generalized Total Variation Regularization and Least Squares Fidelity
    Liu, Haiying
    Gu, Jason
    Huang, Chaojiong
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1945 - 1949
  • [36] ON THE UNIQUENESS OF MONOSPLINES AND PERFECT SPLINES OF LEAST L-NORM AND L2-NORM
    BRAESS, D
    DYN, N
    JOURNAL D ANALYSE MATHEMATIQUE, 1982, 41 : 217 - 233
  • [37] Residual analysis for unidimensional scaling in the L2-norm
    Brusco, Michael J.
    Steinley, Douglas
    Kohn, Hans-Friedrich
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (07) : 2210 - 2221
  • [38] On the Markov inequality in the L2-norm with the Gegenbauer weight
    Aleksov, D.
    Nikolov, G.
    Shadrin, A.
    JOURNAL OF APPROXIMATION THEORY, 2016, 208 : 9 - 20
  • [39] CONVERGENCE IN L2-NORM OF PROBABILITY DENSITY ESTIMATES
    NADARAYA, EA
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1973, 18 (04): : 853 - 855
  • [40] CRITICAL METRICS OF THE L2-NORM OF THE SCALAR CURVATURE
    Catino, Giovanni
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (11) : 3981 - 3986