Heterostructured binary Ni-W sulfides nanosheets as pH-universal electrocatalyst for hydrogen evolution

被引:32
|
作者
Lu, Shan-Shan [1 ]
Shang, Xiao [1 ]
Zhang, Li-Ming [1 ]
Dong, Bin [1 ]
Gao, Wen-Kun [1 ]
Dai, Fang-Na [1 ]
Liu, Bin [1 ]
Chai, Yong-Ming [1 ]
Liu, Chen-Guang [1 ]
机构
[1] China Univ Petr East China, Coll Sci, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Wide-pH; Tungsten disulfide; Nickel sulfide; Electrodeposition; Hydrogen evolution reaction; REDUCED GRAPHENE OXIDE; EFFICIENT ELECTROCATALYST; WS2; NANOSHEETS; HYBRID NANOSHEETS; H-2; PRODUCTION; NICKEL; CATALYSTS; MOS2; PERFORMANCE; NANOWIRES;
D O I
10.1016/j.apsusc.2018.03.177
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing effective and robust electrocatalysts that are applicable for different pH conditions is promising for variable industrial hydrogen evolution reaction (HER), whereas it remains challenging for designing proper materials and protocols. Herein, we have developed a two-step electrodeposition-hydrothermal strategy to construct heterostructured binary Ni-W sulfides nanosheets based on carbon fiber (NiWS/CF). The electrodeposited nickel oxides film on CF in the first step is sulfurized and concurrently incorporated with tungsten disulfide in the following hydrothermal process. Benefiting from synergistic advantages of bimetallic sulfides as well as interwoven nanosheets for efficient mass/charge transport, the NiWS/CF electrode shows excellent HER performances over a broad pH range from acidic (pH = 0), neutral (pH = 7) to alkaline (pH = 14) media. The NiWS/CF electrode also presents stability in long-term electrolysis in wide PH range for at least 12 h, and its interlaced nanosheets structure are well maintained. Our work may provide general and promising strategies to obtain inexpensive and efficient electrocatalysts for pH-universal hydrogen production. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:445 / 453
页数:9
相关论文
共 50 条
  • [21] Metal-organic framework derived NiCoP hollow polyhedrons electrocatalyst for pH-universal hydrogen evolution reaction
    Yunrui Wei
    Xixi Zhang
    Zonghua Wang
    Jiangmei Yin
    Jinzhao Huang
    Gang Zhao
    Xijin Xu
    Chinese Chemical Letters, 2021, 32 (01) : 119 - 124
  • [22] Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution reaction electrocatalyst
    Yu Lin
    Jinlei Wang
    Duanlin Cao
    Yaqiong Gong
    Frontiers of Chemical Science and Engineering, 2021, 15 : 1134 - 1146
  • [23] Interfacial engineering of MoS2/MoN heterostructures as efficient electrocatalyst for pH-universal hydrogen evolution reaction
    Wu, Aiping
    Gu, Ying
    Xie, Ying
    Yan, Haijing
    Jiao, Yanqing
    Wang, Dongxu
    Tian, Chungui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 867
  • [24] ZIF-Derived Carbon Nanoarchitecture as a Bifunctional pH-Universal Electrocatalyst for Energy-Efficient Hydrogen Evolution
    Wang, Lin
    Cao, Junhui
    Cheng, Xiaodi
    Lei, Chaojun
    Dai, Qizhou
    Yang, Bin
    Li, Zhongjian
    Younis, M. Adnan
    Lei, Lecheng
    Hou, Yang
    Ostrikov, Kostya
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (11): : 10044 - 10051
  • [25] A Monodisperse Rh2P-Based Electrocatalyst for Highly Efficient and pH-Universal Hydrogen Evolution Reaction
    Yang, Fulin
    Zhao, Yuanmeng
    Du, Yeshuang
    Chen, Yongting
    Cheng, Gongzhen
    Chen, Shengli
    Luo, Wei
    ADVANCED ENERGY MATERIALS, 2018, 8 (18)
  • [26] CoP3/CoMoP Heterogeneous Nanosheet Arrays as Robust Electrocatalyst for pH-Universal Hydrogen Evolution Reaction
    Jiang, Deli
    Xu, Yan
    Yang, Rong
    Li, Di
    Meng, Suci
    Chen, Min
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (10) : 9309 - 9317
  • [27] Metal-organic framework derived NiCoP hollow polyhedrons electrocatalyst for pH-universal hydrogen evolution reaction
    Wei, Yunrui
    Zhang, Xixi
    Wang, Zonghua
    Yin, Jiangmei
    Huang, Jinzhao
    Zhao, Gang
    Xu, Xijin
    CHINESE CHEMICAL LETTERS, 2021, 32 (01) : 119 - 124
  • [28] Unveiling the pH-universal hydrogen evolution ability of SnS/NiFe2O4 heterostructure electrocatalyst
    John, G.
    Sree, Vijaya Gopalan
    Navaneethan, M.
    Jesuraj, P. Justin
    Applied Surface Science, 2025, 687
  • [29] Vanadium and nitrogen co-doped CoP nanoleaf array as pH-universal electrocatalyst for efficient hydrogen evolution
    Zhang, Wen
    Sun, Yanfang
    Liu, Qingyun
    Guo, Jinxue
    Zhang, Xiao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 791 : 1070 - 1078
  • [30] Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution reaction electrocatalyst
    Lin, Yu
    Wang, Jinlei
    Cao, Duanlin
    Gong, Yaqiong
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2021, 15 (05) : 1134 - 1146