3D domain decomposition method coupling conforming and nonconforming finite elements

被引:5
|
作者
Agouzal, A
Lamoulie, L
Thomas, JM
机构
[1] Univ Lyon 1, F-69622 Villeurbanne, France
[2] UMR 5585, F-69622 Villeurbanne, France
[3] Ecole Ingn Genie Syst Ind, F-17041 La Rochelle, France
[4] Univ Pau, UPRES A 5033, Lab Math Appl Ind, F-64000 Pau, France
关键词
domain decomposition; hybrid finite elements methods;
D O I
10.1051/m2an:1999162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the solution of problems involving partial differential equations in R(3). For three dimensional case, methods are useful if they require neither domain boundary regularity nor regularity for the exact solution of the problem. A new domain decomposition method is therefore presented which uses low degree finite elements. The numerical approximation of the solution is easy, and optimal error bounds are obtained according to suitable norms.
引用
收藏
页码:771 / 780
页数:10
相关论文
共 50 条
  • [21] Some estimates with nonconforming elements in domain decomposition analysis
    Gu, JS
    Hu, XC
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1998, 16 (01) : 63 - 80
  • [22] 3D MCSEM modeling based on domain-decomposition finite-element method
    Hui, Zhejian
    Yin, Changchun
    Zhang, Wenqiang
    Liu, Yunhe
    Xiong, Bin
    JOURNAL OF APPLIED GEOPHYSICS, 2022, 207
  • [23] A family of 3D H2-nonconforming tetrahedral finite elements for the biharmonic equation
    Hu, Jun
    Tian, Shudan
    Zhang, Shangyou
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (08) : 1505 - 1522
  • [24] Domain decomposition Fourier finite element method for the simulation of 3D marine CSEM measurements
    Bakr, Shaaban A.
    Pardo, David
    Mannseth, Trond
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 255 : 456 - 470
  • [25] A family of 3D H~2-nonconforming tetrahedral finite elements for the biharmonic equation
    Jun Hu
    Shudan Tian
    Shangyou Zhang
    Science China Mathematics, 2020, 63 (08) : 1505 - 1522
  • [26] A family of 3D H2-nonconforming tetrahedral finite elements for the biharmonic equation
    Jun Hu
    Shudan Tian
    Shangyou Zhang
    Science China Mathematics, 2020, 63 : 1505 - 1522
  • [27] HYBRID DISCRETIZATION BY CONFORMING AND NONCONFORMING ELEMENTS FOR BOUNDARY ELEMENT METHOD.
    Onuki, Takashi
    Sato, Keiichi
    Yamamura, Tsugio
    Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), 1987, 107 (02): : 53 - 62
  • [28] COUPLING OF VISCOUS AND INVISCID STOKES EQUATIONS VIA A DOMAIN DECOMPOSITION METHOD FOR FINITE-ELEMENTS
    QUARTERONI, A
    LANDRIANI, GS
    VALLI, A
    NUMERISCHE MATHEMATIK, 1991, 59 (08) : 831 - 859
  • [29] Quadratic nonconforming finite element method for 3D Stokes equations on cuboid meshes
    Xin-chen Zhou
    Zhao-liang Meng
    Xiao-shan Wang
    Zhong-xuan Luo
    Applied Mathematics-A Journal of Chinese Universities, 2016, 31 : 21 - 36
  • [30] Coupling of Nonconforming Finite Elements and Boundary Elements I: A Priori Estimates
    C. Carstensen
    S. A. Funken
    Computing, 1999, 62 : 229 - 241