A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution

被引:332
|
作者
Peleg, Tomer [1 ]
Elad, Michael [2 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
基金
欧洲研究理事会;
关键词
Dictionary learning; feedforward neural networks; MMSE estimation; nonlinear prediction; single image super-resolution; sparse representations; statistical models; restricted Boltzmann machine; zooming deblurring; DICTIONARY; INTERPOLATION; ALGORITHM;
D O I
10.1109/TIP.2014.2305844
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address single image super-resolution using a statistical prediction model based on sparse representations of low-and high-resolution image patches. The suggested model allows us to avoid any invariance assumption, which is a common practice in sparsity-based approaches treating this task. Prediction of high resolution patches is obtained via MMSE estimation and the resulting scheme has the useful interpretation of a feedforward neural network. To further enhance performance, we suggest data clustering and cascading several levels of the basic algorithm. We suggest a training scheme for the resulting network and demonstrate the capabilities of our algorithm, showing its advantages over existing methods based on a low-and high-resolution dictionary pair, in terms of computational complexity, numerical criteria, and visual appearance. The suggested approach offers a desirable compromise between low computational complexity and reconstruction quality, when comparing it with state-of-the-art methods for single image super-resolution.
引用
收藏
页码:2569 / 2582
页数:14
相关论文
共 50 条
  • [31] SINGLE COLOR IMAGE SUPER-RESOLUTION USING QUATERNION-BASED SPARSE REPRESENTATION
    Yu, Mengqi
    Xu, Yi
    Sun, Peng
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [32] Single Image Super-Resolution Based on Nonlocal Sparse and Low-Rank Regularization
    Liu, Chunhong
    Fang, Faming
    Xu, Yingying
    Shen, Chaomin
    PRICAI 2016: TRENDS IN ARTIFICIAL INTELLIGENCE, 2016, 9810 : 251 - 261
  • [33] A Single Image Compression Framework Combined with Sparse Representation-Based Super-Resolution
    He Xiaohai
    He Jingbo
    Huang Jianqiu
    Wu Di
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRONIC SCIENCE AND AUTOMATION CONTROL, 2015, 20 : 292 - 296
  • [34] Multiscale self-similarity and sparse representation based single image super-resolution
    Xie, Chao
    Zeng, Weili
    Jiang, Shengqin
    Lu, Xiaobo
    NEUROCOMPUTING, 2017, 260 : 92 - 103
  • [35] New super-resolution reconstruction method based on Mixed Sparse Representations
    Yang X.
    Li F.
    Lu M.
    Xin L.
    Lu X.
    Zhang N.
    National Remote Sensing Bulletin, 2022, 26 (08) : 1685 - 1697
  • [36] Employing structural and statistical information to learn dictionary (s) for single image super-resolution in sparse domain
    Mandal, Srimanta
    Sao, Anil Kumar
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 48 : 63 - 80
  • [37] Single image super-resolution via hybrid resolution NSST prediction
    Liu, Yunan
    Zhang, Shanshan
    Wang, Chunpeng
    Xu, Jie
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 207
  • [38] Feature Fusion Based on Sparse Block for Image Super-resolution
    Wang, Shengping
    Zhao, Li
    Jiang, Runhua
    Huang, Pengcheng
    Xu, Jiawei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3347 - 3354
  • [39] Depth image super-resolution based on joint sparse coding
    Li, Beichen
    Zhou, Yuan
    Zhang, Yeda
    Wang, Aihua
    PATTERN RECOGNITION LETTERS, 2020, 130 : 21 - 29
  • [40] Image super-resolution based on sparse representation and nonlocal regularization
    Li, Xin
    Zhu, Xiuchang
    Journal of Computational Information Systems, 2014, 10 (05): : 2107 - 2116