Compatible actions of Lie algebras

被引:0
|
作者
Di Micco, Davide [1 ]
机构
[1] Univ Milan, Dipartimento Matemat Federigo Enriques, Via Saldini 50, I-20133 Milan, Italy
关键词
Compatible actions; crossed modules; Lie algebras; Peiffer product; ABELIAN TENSOR PRODUCT; MODULES;
D O I
10.1080/00927872.2019.1648656
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study compatible actions (introduced by Brown and Loday in their work on the non-abelian tensor product of groups) in the category of Lie algebras over a fixed ring. We describe the Peiffer product via a new diagrammatic approach, which specializes to the known definitions both in the case of groups and of Lie algebras. We then use this approach to transfer a result linking compatible actions and pairs of crossed modules over a common base object L from groups to Lie algebras. Finally, we show that the Peiffer product, naturally endowed with a crossed module structure, has the universal property of the coproduct in XMod(L)(Lie(R)).
引用
收藏
页码:548 / 563
页数:16
相关论文
共 50 条
  • [11] Bundles of Lie algebras and compatible Poisson brackets
    Yanovski, AB
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (6-7): : 946 - 950
  • [12] Factorization of the loop algebras and compatible Lie brackets
    Golubchik, IZ
    Sokolov, VV
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 : 343 - 350
  • [13] Factorization of the loop algebras and compatible Lie brackets
    Golubchik I.Z.
    Sokolov V.V.
    Journal of Nonlinear Mathematical Physics, 2005, 12 (Suppl 1) : 343 - 350
  • [14] O-Operators on Lie ∞-algebras with respect to Lie ∞-actions
    Caseiro, Raquel
    da Costa, Joana Nunes
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 3079 - 3101
  • [15] CHARACTERIZING LIE (ξ-LIE) DERIVATIONS ON TRIANGULAR ALGEBRAS BY LOCAL ACTIONS
    Qi, Xiaofei
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 816 - 835
  • [16] Totally compatible associative and Lie dialgebras,tridendriform algebras and PostLie algebras
    ZHANG Yong
    BAI ChengMing
    GUO Li
    Science China(Mathematics), 2014, 57 (02) : 259 - 273
  • [17] Totally compatible associative and Lie dialgebras, tridendriform algebras and PostLie algebras
    Zhang Yong
    Bai ChengMing
    Guo Li
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (02) : 259 - 273
  • [18] Totally compatible associative and Lie dialgebras, tridendriform algebras and PostLie algebras
    Yong Zhang
    ChengMing Bai
    Li Guo
    Science China Mathematics, 2014, 57 : 259 - 273
  • [19] PROPER AFFINE ACTIONS ON SEMISIMPLE LIE ALGEBRAS
    Smilga, Ilia
    ANNALES DE L INSTITUT FOURIER, 2016, 66 (02) : 785 - 831
  • [20] ACTIONS IN THE CATEGORY OF PRECROSSED MODULES IN LIE ALGEBRAS
    Casas, J. M.
    Datuashvili, T.
    Ladra, M.
    Uslu, E. O.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (08) : 2962 - 2982