Boosting the cycling stability of hydrated vanadium pentoxide by Y3+ pillaring for sodium-ion batteries

被引:50
|
作者
Liu, Canzheng [1 ]
Yao, Jinhuan [1 ]
Zou, Zhengguang [2 ]
Li, Yanwei [1 ,2 ]
Cao, Guozhong [3 ]
机构
[1] Guilin Univ Technol, Coll Chem & Bioengn, Guangxi Key Lab Electrochem & Magnetochem Funct M, Guilin 541004, Peoples R China
[2] Guilin Univ Technol, Coll Mat Sci & Engn, Guilin 541004, Peoples R China
[3] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; Hydrated vanadium pentoxide; Cathode materials; Pre-intercalation; Electrochemical performance; CENTER DOT H2O; SN-DOPED V2O5; CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; LITHIUM STORAGE; ANODE MATERIALS; ENERGY-STORAGE; INTERCALATION; OXIDE;
D O I
10.1016/j.mtener.2018.12.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrated V2O5 has attracted considerable attention for sodium ion batteries (SIBs) due to its high theoretical capacity. However, the poor cycling performance caused by structural instability during sodiaton/desodiation greatly hampers its application. Herein, Y3+ pre-intercalated hydrated V2O5 samples (YxV2O5, x = 0.0, 0.02 and 0.06) are synthesized by a facile sol-gel and freeze-drying routes followed by heat treatment in air at 200 degrees C. It is found that the morphology, oxidation state of vanadium, and sodium storage performance of hydrated V2O5 could be largely modulated by Y3+ pre-intercalation. As cathode material for SIBs, the Y0.02V2O5 sample exhibits much enhanced cycling stability, higher Na+ diffusion coefficient, lower electrochemical reaction resistance, and improved rate capability compared to the pure V2O5 counterpart. First-principle calculations reveals that the pre-intercalated Y3+ forms [YO6] pillar with two oxygen atoms from the VO5 pyramids and four oxygen atoms from the intercalated water molecules, which firmly binds the V2O5 double layers together. Ex-situ XRD, SEM, and TEM analysis demonstrate that Y3+ pre-intercalation effectively strengthens the structural integrity, stabilizes the layered structure, and suppress the irreversible phase transition of hydrated V2O5 during repeated discharge/charge cycling, and therefore leading to enhanced cycling stability and improved rate capability. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:218 / 227
页数:10
相关论文
共 50 条
  • [21] Cycling performance of layered oxide cathode materials for sodium-ion batteries
    Jinpin Wu
    Junhang Tian
    Xueyi Sun
    Weidong Zhuang
    International Journal of Minerals,Metallurgy and Materials, 2024, (07) : 1720 - 1744
  • [22] Porous functionalized carbon as anode for a long cycling of sodium-ion batteries
    Chen, Zhi
    Zhu, Dejian
    Li, Jialin
    Liang, Danni
    Liu, Mingqiang
    Hu, Zhihui
    Li, Xibao
    Feng, Zhijun
    Huang, Juntong
    IONICS, 2019, 25 (09) : 4517 - 4522
  • [23] Defect and interlayer spacing engineering of vanadium selenide for boosting sodium-ion storage
    Feng, Wang
    Wen, Xia
    Peng, Yanan
    Song, Luying
    Li, Xiaohui
    Du, Ruofan
    Yang, Junbo
    Jiang, Yulin
    Li, Hui
    Sun, Hang
    Huang, Ling
    He, Jun
    Shi, Jianping
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (02) : 748 - 757
  • [24] Cycling performance of layered oxide cathode materials for sodium-ion batteries
    Wu, Jinpin
    Tian, Junhang
    Sun, Xueyi
    Zhuang, Weidong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (07) : 1720 - 1744
  • [25] Porous functionalized carbon as anode for a long cycling of sodium-ion batteries
    Zhi Chen
    Dejian Zhu
    Jialin Li
    Danni Liang
    Mingqiang Liu
    Zhihui Hu
    Xibao Li
    Zhijun Feng
    Juntong Huang
    Ionics, 2019, 25 : 4517 - 4522
  • [26] Partial sodiation induced laminate structure and high cycling stability of black phosphorous for sodium-ion batteries
    Zhuang, Xiaoqiang
    Li, Kaikai
    Zhang, Tong-Yi
    NANOSCALE, 2020, 12 (38) : 19609 - 19616
  • [27] Better than crystalline: amorphous vanadium oxide for sodium-ion batteries
    Uchaker, E.
    Zheng, Y. Z.
    Li, S.
    Candelaria, S. L.
    Hu, S.
    Cao, G. Z.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (43) : 18208 - 18214
  • [28] Mn2+ Intercalation into Hydrated Vanadium Pentoxide Nanosheets for Highly Durable Zinc Ion Batteries
    Li, Kexin
    Liu, Ying
    Wu, Xiang
    ACS APPLIED NANO MATERIALS, 2023, 6 (13) : 12439 - 12446
  • [29] Realizing long-term cycling stability of O3-type layered oxide cathodes for sodium-ion batteries
    Zhang, Guohua
    Gao, Yuheng
    Zhang, Ping
    Gao, Yuheng
    Hou, Jingrong
    Shi, Xuemin
    Ma, Jiwei
    Zhang, Renyuan
    Huang, Yunhui
    MATERIALS HORIZONS, 2024, 11 (16) : 3935 - 3945
  • [30] Polyanion Sodium Vanadium Phosphate for Next Generation of Sodium-Ion Batteries-A Review
    Chen, Gongxuan
    Huang, Qing
    Wu, Tian
    Lu, Li
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (34)