A GEOMETRICAL VERSION OF HARDY-RELLICH TYPE INEQUALITIES

被引:6
|
作者
Nasibullin, Ramil [1 ]
机构
[1] Kazan VI Lenin State Univ, NI Lobachevsky Inst Math & Mech, 8 Kremlyovskaya Str, Kazan 420008, Russia
关键词
Hardy inequality; Rellich inequality; Bessel function; Lamb constant; distance function; Laplace operator; additional term; DOMAINS; CONSTANT;
D O I
10.1515/ms-2017-0268
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtained a version of Hardy-Rellich type inequality in a domain Omega is an element of R-n which involves the distance to the boundary, the diameter and the volume of Omega. Weight functions in the inequalities depend on the "mean-distance" function and on the distance function to the boundary of Omega. The proved inequalities connect function to first and second order derivatives.
引用
收藏
页码:785 / 800
页数:16
相关论文
共 50 条
  • [21] Hardy-Rellich inequalities with boundary remainder terms and applications
    Berchio, Elvise
    Cassani, Daniele
    Gazzola, Filippo
    MANUSCRIPTA MATHEMATICA, 2010, 131 (3-4) : 427 - 458
  • [22] Best constants in the Hardy-Rellich inequalities and related improvements
    Tertikas, A.
    Zographopoulos, N. B.
    ADVANCES IN MATHEMATICS, 2007, 209 (02) : 407 - 459
  • [23] GENERALIZED HARDY-RELLICH INEQUALITIES IN CRITICAL DIMENSION AND ITS APPLICATIONS
    Adimurthi
    Santra, Sanjiban
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (03) : 367 - 394
  • [24] One-dimensional sharp discrete Hardy-Rellich inequalities
    Huang, Xia
    Ye, Dong
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (01):
  • [25] HARDY-RELLICH INTEGRAL INEQUALITIES IN DOMAINS SATISFYING THE EXTERIOR SPHERE CONDITION
    Avkhadiev, F. G.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2019, 30 (02) : 161 - 179
  • [26] Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem
    Adimurthi
    Grossi, Massimo
    Santra, Sanjiban
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 240 (01) : 36 - 83
  • [27] Hardy-Rellich identities with Bessel pairs
    Tuan Duy Nguyen
    Nguyen Lam-Hoang
    Anh Triet Nguyen
    ARCHIV DER MATHEMATIK, 2019, 113 (01) : 95 - 112
  • [28] Hardy and Rellich type inequalities with remainders
    Ramil Nasibullin
    Czechoslovak Mathematical Journal, 2022, 72 : 87 - 110
  • [29] Hardy and Rellich Type Inequalities with Remainders
    Nasibullin, Ramil
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (01) : 87 - 110
  • [30] The Hardy-Rellich inequality for polyharmonic operators
    Owen, MP
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 825 - 839