Preparation of spherical LiNi0.80Co0.15Mn0.05O2 lithium-ion cathode material by continuous co-precipitation

被引:55
|
作者
Cheralathan, K. K. [1 ]
Kang, Na Young [1 ]
Park, Hun Su [1 ]
Lee, You Jin [1 ]
Choi, Won Choon [1 ]
Ko, Young Soo [2 ]
Park, Yong-Ki [1 ]
机构
[1] Korea Res Inst Chem Technol, Div Adv Chem Technol, Taejon 305343, South Korea
[2] Kongju Natl Univ, Dept Chem Engn, Gongju 314701, Cheungnam, South Korea
关键词
Lithium battery; Cathode; Continuous co-precipitation; Capacity retention; ELECTROCHEMICAL PROPERTIES; THERMAL-STABILITY; ELECTRODE MATERIALS; BATTERIES; LICOO2; OXIDES; CELLS; MGO; LINI0.8CO0.2O2; SUBSTITUTION;
D O I
10.1016/j.jpowsour.2009.08.101
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Micro-spherical Ni0.80Co0.15Mn0.05(OH)(2) precursors with a narrow size-distribution and high tap-density are prepared successfully by continuous co-precipitation of the corresponding metal salt solutions using NaOH and NH4OH as precipitation and complexing agents. LiNi0.80Co0.15Mn0.05O2 is then prepared as a lithium battery cathode from this precursor by the introduction of LiOH-H2O. The pH and NH3:metal molar ratio show significant effects on the morphology, microstructure and tap-density of the prepared Ni0.80Co0.15Mn0.05(OH)(2) and the R values and I(003)/I(104) ratio of lithiated LiNi0.80Co0.15Mn0.05O2. Spherical LiNi0.80Co0.15Mn0.05O2 prepared under optimum conditions reveals a hexagonally ordered, layered structure without cation mixing and an initial charging capacity of 176 mAhg(-1). More than 91% of the capacity is retained after 40 cycles at the 1 C rate in a cut-off voltage range of 4.3-3.0 V. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1486 / 1494
页数:9
相关论文
共 50 条
  • [31] CeO2 Surface Modification to Improve Cycle and Storage Performance on Lithium Ion Battery Cathode Material LiNi0.80Co0.15Al0.05O2
    Xia Shu-Biao
    Zhang Ying-Jie
    Dong Peng
    Yang Rui-Ming
    Zhang Yan-Nan
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2014, 30 (03) : 529 - 535
  • [32] A facile method to synthesize spherical LiNi0.8Co0.15Al0.05O2 cathode material
    Zhenping Qiu
    Yingjie Zhang
    Mingyu Zhang
    Peng Dong
    Shubiao Xia
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 18699 - 18705
  • [33] A facile method to synthesize spherical LiNi0.8Co0.15Al0.05O2 cathode material
    Qiu, Zhenping
    Zhang, Yingjie
    Zhang, Mingyu
    Dong, Peng
    Xia, Shubiao
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (24) : 18699 - 18705
  • [34] A ternary oxide precursor with trigonal structure for synthesis of LiNi0.80Co0.15Al0.05O2 cathode material
    Qiu, Zhenping
    Zhang, Yingjie
    Dong, Peng
    Wang, Ding
    Xia, Shubiao
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (10) : 3037 - 3046
  • [35] A ternary oxide precursor with trigonal structure for synthesis of LiNi0.80Co0.15Al0.05O2 cathode material
    Zhenping Qiu
    Yingjie Zhang
    Peng Dong
    Ding Wang
    Shubiao Xia
    Journal of Solid State Electrochemistry, 2017, 21 : 3037 - 3046
  • [36] LiNi0.7Co0.15Mn0.15O2 microspheres as high-performance cathode materials for lithium-ion batteries
    Zhou-Guang Lu
    Xin-Xin Tan
    You-Gen Tang
    Ke-Chao Zhou
    Rare Metals, 2014, 33 : 608 - 614
  • [37] The preparation and electrochemical study of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion battery
    Xin Tang
    Jing Li
    Min Zeng
    Yeju Huang
    Jianqiang Guo
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 848 - 856
  • [38] The preparation and electrochemical study of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion battery
    Tang, Xin
    Li, Jing
    Zeng, Min
    Huang, Yeju
    Guo, Jianqiang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (01) : 848 - 856
  • [39] LiNi0.7Co0.15Mn0.15O2 microspheres as high-performance cathode materials for lithium-ion batteries
    Lu, Zhou-Guang
    Tan, Xin-Xin
    Tang, You-Gen
    Zhou, Ke-Chao
    RARE METALS, 2014, 33 (05) : 608 - 614
  • [40] LiNi0.7Co0.15Mn0.15O2 microspheres as high-performance cathode materials for lithium-ion batteries
    Zhou-Guang Lu
    Xin-Xin Tan
    You-Gen Tang
    Ke-Chao Zhou
    Rare Metals, 2014, 33 (05) : 608 - 614