Information content of multi-angular remote sensing data

被引:0
|
作者
Xu, WL [1 ]
Yang, H [1 ]
Li, XM [1 ]
Wang, JD [1 ]
Yan, GJ [1 ]
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we take the kernel-driven model as an example, focus on the information contents definition and calculation of multi-angular remote sensing (MARS) data. We study four methods to measure the information content of MARS data: Fisher statistic, information entropy, determinant and sum of the diagonal elements of the information matrix, how to use the Fisher statistic theory and information entropy to measure the information contents of MARS data, to calculate the information contents of the dataset on the three unknowns for different subset of the data. The analyses show that information entropy is a good tool for measuring information content of MARS data.
引用
收藏
页码:1636 / 1638
页数:3
相关论文
共 50 条
  • [31] Using Multi-Angular Hyperspectral Data to Estimate the Vertical Distribution of Leaf Chlorophyll Content in Wheat
    Wu, Bin
    Huang, Wenjiang
    Ye, Huichun
    Luo, Peilei
    Ren, Yu
    Kong, Weiping
    [J]. REMOTE SENSING, 2021, 13 (08)
  • [32] Hot dark spot index method based on multi-angular remote sensing for leaf area index retrieval
    Qingyan Meng
    Chunmei Wang
    Xingfa Gu
    Yunxiao Sun
    Ying Zhang
    Rumiana Vatseva
    Tamas Jancso
    [J]. Environmental Earth Sciences, 2016, 75
  • [33] Hot dark spot index method based on multi-angular remote sensing for leaf area index retrieval
    Meng, Qingyan
    Wang, Chunmei
    Gu, Xingfa
    Sun, Yunxiao
    Zhang, Ying
    Vatseva, Rumiana
    Jancso, Tamas
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (09)
  • [34] Polarized properties of typical surface types over China based on the multi-angular polarized remote sensing measurements
    Xiang Kun-Sheng
    Cheng Tian-Hai
    Gu Xing-Fa
    Guo Hong
    Chen Hao
    Wang Ying
    Wei Xi
    Bao Fang-Wen
    [J]. ACTA PHYSICA SINICA, 2015, 64 (22)
  • [35] PolarBRDF: A general purpose Python']Python package for visualization and quantitative analysis of multi-angular remote sensing measurements
    Singh, Manoj K.
    Gautam, Ritesh
    Gatebe, Charles K.
    Poudyal, Rajesh
    [J]. COMPUTERS & GEOSCIENCES, 2016, 96 : 173 - 180
  • [36] Study of the information content contained in remote sensing data of atmosphere
    Du Hua-Dong
    Huang Si-Xun
    Fang Han-Xian
    Long Zhi-Yong
    Wang Yong-Qi
    [J]. ACTA PHYSICA SINICA, 2010, 59 (01) : 683 - 691
  • [37] Assessment of Chlorophyll Content Using a New Vegetation Index Based on Multi-Angular Hyperspectral Image Data
    Liao Qin-hong
    Zhang Dong-yan
    Wang Ji-hua
    Yang Gui-jun
    Yang Hao
    Craig, Coburn
    Wong Zhijie
    Wang Da-cheng
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34 (06) : 1599 - 1604
  • [38] A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska
    Selkowitz, David J.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2010, 114 (07) : 1338 - 1352
  • [39] Analysis of multi-angular data to retrieve indicators of ecosystem structure
    Widlowski, JL
    Pinty, B
    Gobron, N
    Verstraete, MM
    Davis, AB
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING IX, 2004, 5238 : 1 - 15
  • [40] Aerosol retrieval using synthetic polder multi-angular data
    Kuo, KS
    Weger, RC
    Welch, RM
    [J]. IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1917 - 1919