Riemann-Liouville fractional stochastic evolution equations driven by both Wiener process and fractional Brownian motion

被引:8
|
作者
Yang, Min [1 ]
Gu, Haibo [2 ]
机构
[1] Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Peoples R China
[2] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830017, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Liouville fractional derivative; Stochastic evolution equations; Fractional Brownian motion; Mild solution; DIFFERENTIAL-EQUATIONS; CAUCHY-PROBLEMS; EXISTENCE;
D O I
10.1186/s13660-020-02541-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the study of the existence and uniqueness of mild solution to a class of Riemann-Liouville fractional stochastic evolution equations driven by both Wiener process and fractional Brownian motion. Our results are obtained by using fractional calculus, stochastic analysis, and the fixed-point technique. Moreover, an example is provided to illustrate the application of the obtained abstract results.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [41] a-Whittaker controllability of ?-Hilfer fractional stochastic evolution equations driven by fractional Brownian motion
    Ghaemi, Mohammad Bagher
    Mottaghi, Fatemeh
    Saadati, Reza
    Allahviranloo, Tofigh
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (05):
  • [42] Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives
    Li Kexue
    Peng Jigen
    Jia Junxiong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) : 476 - 510
  • [43] Mild solutions of Riemann-Liouville fractional differential equations with fractional impulses
    Anguraj, Annamalai
    Kanjanadevi, Subramaniam
    Jose Nieto, Juan
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (06): : 753 - 764
  • [44] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134
  • [45] Solutions to Riemann-Liouville fractional integrodifferential equations via fractional resolvents
    Ji, Shaochun
    Yang, Dandan
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [46] Stochastic Volterra equations driven by fractional Brownian motion
    Xiliang Fan
    Frontiers of Mathematics in China, 2015, 10 : 595 - 620
  • [47] Stochastic Volterra equations driven by fractional Brownian motion
    Fan, Xiliang
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (03) : 595 - 620
  • [48] Stochastic differential equations driven by fractional Brownian motion
    Xu, Liping
    Luo, Jiaowan
    STATISTICS & PROBABILITY LETTERS, 2018, 142 : 102 - 108
  • [49] Stochastic fractional evolution equations with fractional brownian motion and infinite delay
    Xu, Liping
    Li, Zhi
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 36 - 46
  • [50] Stochastic differential equations driven by a Wiener process and fractional Brownian motion: Convergence in Besov space with respect to a parameter
    Mishura, Yu. S.
    Posashkova, S. V.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1166 - 1180