Enhancing photocurrent of Cu(In,Ga)Se2 solar cells with actively controlled Ga grading in the absorber layer

被引:50
|
作者
Gong, Junbo [1 ,3 ]
Kong, Yifan [2 ]
Li, Jianmin [1 ]
Wang, Kefan [1 ]
Wang, Xiangqi [4 ]
Zhang, Zengming [5 ]
Ding, Zejun [4 ]
Xiao, Xudong [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Phys, Mat Sci & Engn Program, Hong Kong, Peoples R China
[3] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[4] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, Ctr Phys Expt, Hefei 230026, Anhui, Peoples R China
关键词
Cu(In; Ga) Se-2; CIGS; Solar cells; Ga grading; Active control; HIGH-EFFICIENCY; THIN-FILMS; TRANSPORT; SODIUM; CU(IN;
D O I
10.1016/j.nanoen.2019.05.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly efficient Cu(In,Ga)Se-2 (CIGS) thin film solar cells are often fabricated with a double Ga grading along the thickness direction of the light absorber. In this work, through a progressive procedure of using time-dependent Ga and In deposition rates, it is manifested that how the detailed shape of the double Ga grading profile in terms of the depth of the V-shape, the width of the V-shape, and the spatial position of the minimum bandgap can be experimentally actively manipulated. Moreover, the effect of the aforementioned features of the Ga grading profile on the photo-generated current has been uncovered by the progressive improvement in the spectral response of the external quantum efficiency spectra. Within the effort of our optimization, a CIGS solar cell with a conversion efficiency of 20.3% is obtained, believed to be the best reported for CIGS solar cells without actively using alkali post deposition treatment technology. This work has provided a practical and operable route to actively control the Ga grading profile and turned the fabrication of high efficiency CIGS solar cell from an art to more a science.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
  • [21] Concentrating light in Cu(In,Ga)Se2 solar cells
    Schmid, M.
    Yin, G.
    Song, M.
    Duan, S.
    Heidmann, B.
    Sancho-Martinez, D.
    Kaemmer, S.
    Koehler, T.
    Manley, P.
    Lux-Steiner, M. Ch.
    NEXT GENERATION TECHNOLOGIES FOR SOLAR ENERGY CONVERSION VII, 2016, 9937
  • [22] The Influence of Absorber Thickness on Cu(In,Ga)Se2 Solar Cells With Different Buffer Layers
    Pettersson, Jonas
    Torndahl, Tobias
    Platzer-Bjorkman, Charlotte
    Hultqvist, Adam
    Edoff, Marika
    IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (04): : 1376 - 1382
  • [23] Surface engineering in Cu(In,Ga)Se2 solar cells
    Schleussner, Sebastian Michael
    Pettersson, Jonas
    Torndahl, Tobias
    Edoff, Marika
    PROGRESS IN PHOTOVOLTAICS, 2013, 21 (04): : 561 - 568
  • [24] The Effect of Absorber Stoichiometry on the Stability of Widegap (Ag,Cu)(In,Ga)Se2 Solar Cells
    Pearson, Patrick
    Keller, Jan
    Stolt, Lars
    Edoff, Marika
    Bjorkman, Charlotte Platzer
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (11):
  • [25] Ultrathin Cu(In,Ga)Se2 based solar cells
    Naghavi, N.
    Mollica, F.
    Goffard, J.
    Posada, J.
    Duchatelet, A.
    Jubault, M.
    Donsanti, F.
    Cattoni, A.
    Collin, S.
    Grand, P. P.
    Greffet, J. J.
    Lincot, D.
    THIN SOLID FILMS, 2017, 633 : 55 - 60
  • [26] Concentrating light in Cu(In,Ga)Se2 solar cells
    Schmid, Martina
    Yin, Guanchao
    Song, Min
    Duan, Shengkai
    Heidmann, Berit
    Sancho-Martinez, Diego
    Kaemmer, Steven
    Koehler, Tristan
    Manley, Phillip
    Lux-Steiner, Martha Ch
    JOURNAL OF PHOTONICS FOR ENERGY, 2017, 7 (01):
  • [27] Numerical analysis on effects of experimental Ga grading on Cu(In,Ga)Se2 solar cell performance
    Liu, Yiming
    Li, Boyan
    Lin, Shuping
    Liu, Wei
    Adam, Jost
    Madsen, Morten
    Rubahn, Horst-Gunter
    Sun, Yun
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2018, 120 : 190 - 196
  • [28] Sodium in Cu(In, Ga)Se2 Solar Cells: To Be or Not to Be Beneficial
    Karami, Ava
    Morawski, Marcin
    Kempa, Heiko
    Scheer, Roland
    Cojocaru-Miredin, Oana
    SOLAR RRL, 2024, 8 (03)
  • [29] Phototransistor effects in Cu(In,Ga)Se2 solar cells
    Ott, Thomas
    Walter, Thomas
    Unold, Thomas
    THIN SOLID FILMS, 2013, 535 : 275 - 278
  • [30] Radiation response of Cu(In,Ga)Se2 solar cells
    Jasenek, A
    Rau, U
    Weinert, K
    Schock, HW
    Werner, JH
    PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS A-C, 2003, : 593 - 598