A machine learning method for real-time numerical simulations of cardiac electromechanics

被引:25
|
作者
Regazzoni, F. [1 ]
Salvador, M. [1 ]
Dede, L. [1 ]
Quarteroni, A. [1 ,2 ]
机构
[1] Politecn Milan, MOX Dipartimento Matemat, Pzza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Ecole Polytech Fed Lausanne, Math Inst, Av Piccard, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
Cardiac electromechanics; Machine learning; Reduced order modeling; Global sensitivity analysis; Bayesian parameter estimation; SENSITIVITY-ANALYSIS; MODELS; CONTRACTION; UNCERTAINTY;
D O I
10.1016/j.cma.2022.114825
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a machine learning-based method to build a system of differential equations that approximates the dynamics of 3D electromechanical models for the human heart, accounting for the dependence on a set of parameters. Specifically, our method permits to create a reduced-order model (ROM), written as a system of Ordinary Differential Equations (ODEs) wherein the forcing term, given by the right-hand side, consists of an Artificial Neural Network (ANN), that possibly depends on a set of parameters associated with the electromechanical model to be surrogated. This method is non-intrusive, as it only requires a collection of pressure and volume transients obtained from the full-order model (FOM) of cardiac electromechanics. Once trained, the ANN-based ROM can be coupled with hemodynamic models for the blood circulation external to the heart, in the same manner as the original electromechanical model, but at a dramatically lower computational cost. Indeed, our method allows for real-time numerical simulations of the cardiac function. Our results show that the ANN-based ROM is accurate with respect to the FOM (relative error between 10(-3) and 10(-2) for biomarkers of clinical interest), while requiring very small training datasets (30-40 samples). We demonstrate the effectiveness of the proposed method on two relevant contexts in cardiac modeling. First, we employ the ANN-based ROM to perform a global sensitivity analysis on both the electromechanical and hemodynamic models. Second, we perform a Bayesian estimation of two parameters starting from noisy measurements of two scalar outputs. In both these cases, replacing the FOM of cardiac electromechanics with the ANN-based ROM makes it possible to perform in a few hours of computational time all the numerical simulations that would be otherwise unaffordable, because of their overwhelming computational cost, if carried out with the FOM. As a matter of fact, our ANN-based ROM is able to speedup the numerical simulations by more than three orders of magnitude. (C)& nbsp;2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Lightweight Machine Learning Method for Real-Time Espresso Analysis
    Choi, Jintak
    Lee, Seungeun
    Kang, Kyungtae
    Suh, Hyojoong
    ELECTRONICS, 2024, 13 (04)
  • [2] Faster than real-time machine learning within high fidelity Simulations
    Danahy, EE
    Morrison, SA
    35TH ANNUAL SIMULATION SYMPOSIUM, PROCEEDINGS, 2002, : 300 - 307
  • [3] Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations
    Pellicer-Valero, Oscar J.
    Jose Ruperez, Maria
    Martinez-Sanchis, Sandra
    Martin-Guerrero, Jose D.
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 143
  • [4] A Coupling Physics Model for Real-Time 4D Simulation of Cardiac Electromechanics
    Chen, Rui
    Cui, Jiahao
    Li, Shuai
    Hao, Aimin
    COMPUTER-AIDED DESIGN, 2024, 175
  • [5] A machine learning nowcasting method based on real-time reanalysis data
    Han, Lei
    Sun, Juanzhen
    Zhang, Wei
    Xiu, Yuanyuan
    Feng, Hailei
    Lin, Yinjing
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (07) : 4038 - 4051
  • [6] Machine Learning Application for Real-Time Simulator
    Hadadi, Azadeh
    Chardonnet, Jean-Remy
    Guillet, Christophe
    Ovtcharova, Jivka
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2024, 2024, : 1 - 5
  • [7] Learning system in real-time machine vision
    Li, Wenbin
    Lv, Zhihan
    Cosker, Darren
    Yang, Yongliang
    NEUROCOMPUTING, 2018, 288 : 1 - 2
  • [8] A Compositional Approach for Real-Time Machine Learning
    Allen, Nathan
    Raje, Yash
    Ro, Jin Woo
    Roop, Partha
    17TH ACM-IEEE INTERNATIONAL CONFERENCE ON FORMAL METHODS AND MODELS FOR SYSTEM DESIGN (MEMOCODE), 2019,
  • [9] Real-Time Machine Learning: The Missing Pieces
    Nishihara, Robert
    Moritz, Philipp
    Wang, Stephanie
    Tumanov, Alexey
    Paul, William
    Schleier-Smith, Johann
    Liaw, Richard
    Niknami, Mehrdad
    Jordan, Michael, I
    Stoica, Ion
    PROCEEDINGS OF THE 16TH WORKSHOP ON HOT TOPICS IN OPERATING SYSTEMS (HOTOS 2017), 2017, : 106 - 110
  • [10] Machine learning for real-time remote detection
    Labbe, Benjamin
    Fournier, Jerome
    Henaff, Gilles
    Bascle, Benedicte
    Canu, Stephane
    OPTICS AND PHOTONICS FOR COUNTERTERRORISM AND CRIME FIGHTING VI AND OPTICAL MATERIALS IN DEFENCE SYSTEMS TECHNOLOGY VII, 2010, 7838