Photochemistry of NO chemisorbed on TiO2(110) and TiO2 powders

被引:78
|
作者
Rusu, CN [1 ]
Yates, JT [1 ]
机构
[1] Univ Pittsburgh, Ctr Surface Sci, Dept Chem, Pittsburgh, PA 15260 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2000年 / 104卷 / 08期
关键词
D O I
10.1021/jp992239b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The photodecomposition of chemisorbed NO has been studied using ultraviolet radiation of (3.96 +/- 0.07) eV. Both the TiO2 (110) single-crystal substrate and high area compressed TiO2 powders have been investigated. A primary photoproduct is N2O gas, which desorbs immediately upon irradiation of the TiO2 (110) surface. Following this process, the photoproduction of NO gas is observed to reach a maximum rate and then to decline. The cross section for the initial photodepletion of NO is about 1 x 10(-15) cm(2), corresponding to a quantum efficiency near unity. In contrast:, the quantum efficiencies of gas-phase N2O and NO photoproduction from chemisorbed NO on TiO2 are only in the range 10(-2)-10(-4), indicating that NO photodecomposition primarily yields an intermediate photoproduct (N2O) which is captured on the crystal surface at 118 K. Studies of the infrared spectral behavior of NO on powdered and compressed high area TiO2 powders during photolysis confirm that much of the N2O photoproduct is retained on the surface. Furthermore, the infrared studies indicate that the penetration of ultraviolet light into the powder occurs to a depth of order 0.003 cm, which is very large compared to the light attenuation length known for individual TiO2 crystals (200 Angstrom). This effect is thought to be due to light transport effects at the particle boundaries in the compressed powder, and this effect therefore is favorable for photoprocesses using powders. Evidence for sub-bandgap excitation of chemisorbed NO, leading to N2O production is presented.
引用
收藏
页码:1729 / 1737
页数:9
相关论文
共 50 条
  • [21] PHOTOCATALYTIC DEHYDROGENATION OF 2-PROPANOL OVER TIO2 AND METAL TIO2 POWDERS
    TERATANI, S
    NAKAMICHI, J
    TAYA, K
    TANAKA, K
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1982, 55 (06) : 1688 - 1690
  • [22] Structural characterization of TiO2/TiNxOy (δ-doping) heterostructures on (110)TiO2 substrates
    Chiaramonte, T
    Cardoso, LP
    Gelamo, RV
    Fabreguette, F
    Sacilotti, M
    de Lucas, MCM
    Imhoff, L
    Bourgeois, S
    Kihn, Y
    Casanove, MJ
    APPLIED SURFACE SCIENCE, 2003, 212 : 661 - 666
  • [23] Preparation of TiO2 nanometer powders
    Tang, FQ
    Hou, LP
    Guo, GS
    JOURNAL OF INORGANIC MATERIALS, 2001, 16 (04) : 615 - 619
  • [24] Preparation of TiO2 nanometer powders
    Tang, Fang-Qiong
    Hou, Li-Ping
    Guo, Guang-Sheng
    2001, Science Press (16):
  • [25] Photochemistry of methanol at 3D networked aerogels of TiO2 and Au/TiO2
    Morris, John R.
    DeSario, Paul A.
    Pietron, Jeremy J.
    Panayotov, Dimitar A.
    Rolison, Debra R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [26] Photochemistry of CO, acetone and O2 on reduced rutile TiO2(110)
    Kimmel, Greg A.
    Petrik, Nikolay G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [27] THE ENCAPSULATION OF FE ON TIO2(110)
    PAN, JM
    MADEY, TE
    CATALYSIS LETTERS, 1993, 20 (3-4) : 269 - 274
  • [28] Orientation of carboxylates on TiO2(110)
    Gutiérrez-Sosa, A
    Martínez-Escolano, P
    Raza, H
    Lindsay, R
    Wincott, PL
    Thornton, G
    SURFACE SCIENCE, 2001, 471 (1-3) : 163 - 169
  • [29] CO photooxidation on TiO2(110)
    Linsebigler, A
    Lu, GQ
    Yates, JT
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (16): : 6631 - 6636
  • [30] TITANIUM OVERLAYERS ON TIO2(110)
    ROCKER, G
    GOPEL, W
    SURFACE SCIENCE, 1987, 181 (03) : 530 - 558