A consensus sampling technique for fast and robust model fitting

被引:28
|
作者
Cheng, Chia-Ming [1 ]
Lai, Shang-Hong [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu 300, Taiwan
关键词
RANSAC; Robust estimation; Model fitting; Fundamental matrix estimation; SEGMENTATION; ESTIMATOR;
D O I
10.1016/j.patcog.2009.01.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new algorithm is proposed to improve the efficiency and robustness of random sampling consensus (RANSAC) without prior information about the error scale. Three techniques are developed in an iterative hypothesis-and-evaluation framework. Firstly, we propose a consensus sampling technique to increase the probability of sampling inliers by exploiting the feedback information obtained from the evaluation procedure. Secondly, the preemptive multiple K-th order approximation (PMKA) is developed for efficient model evaluation with unknown error scale. Furthermore, we propose a coarse-to-fine strategy for the robust standard deviation estimation to determine the unknown error scale. Experimental results of the fundamental matrix computation on both simulated and real data are shown to demonstrate the superiority of the proposed algorithm over the previous methods. (C) 2009 Elsevier Ltd. All rights reserved
引用
收藏
页码:1318 / 1329
页数:12
相关论文
共 50 条
  • [11] A fast robust method for fitting gamma distributions
    Clarke, Brenton R.
    McKinnon, Peter L.
    Riley, Geoff
    STATISTICAL PAPERS, 2012, 53 (04) : 1001 - 1014
  • [12] A fast robust method for fitting gamma distributions
    Brenton R. Clarke
    Peter L. McKinnon
    Geoff Riley
    Statistical Papers, 2012, 53 : 1001 - 1014
  • [13] Robust fitting of the binomial model
    Ruckstuhl, AF
    Welsh, AH
    ANNALS OF STATISTICS, 2001, 29 (04): : 1117 - 1136
  • [14] Robust control of a laboratory aircraft model via fast output sampling
    Werner, H
    Meister, T
    CONTROL ENGINEERING PRACTICE, 1999, 7 (03) : 305 - 313
  • [15] Evolution strategy sampling consensus for robust estimator
    Toda Y.
    Kubota N.
    1600, Fuji Technology Press (20): : 788 - 802
  • [16] Robust Hypersurface Fitting Based on Random Sampling Approximations
    Fujiki, Jun
    Akaho, Shotaro
    Hino, Hideitsu
    Murata, Noboru
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 520 - 527
  • [17] Evolution Strategy Sampling Consensus for Robust Estimator
    Toda, Yuichiro
    Kubota, Naoyuki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2016, 20 (05) : 788 - 802
  • [18] Design of PSS for SMIB System Using Robust Fast Output Sampling Feedback Technique
    Sambariya, D. K.
    Prasad, Rajendra
    7TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO 2013), 2013, : 166 - 171
  • [19] ACTIVE APPEARANCE MODEL FITTING UNDER OCCLUSION USING FAST-ROBUST PCA
    Storer, Markus
    Roth, Peter M.
    Urschler, Martin
    Bischof, Horst
    Birchbauer, Josef A.
    VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2009, : 130 - +
  • [20] A fast robust geometric fitting method for parabolic curves
    Lopez-Rubio, Ezequiel
    Thurnhofer-Hemsi, Karl
    Beatriz Blazquez-Parra, Elidia
    David de Cozar-Macias, Scar
    Carmen Ladron-de-Guevara-Munoz, M.
    PATTERN RECOGNITION, 2018, 84 : 301 - 316