Critical densities for the RPA approach in quasi-one-dimensional electronic systems

被引:0
|
作者
Borges, JB
Machado, PCM
Osório, FAP
Borges, AN
机构
[1] Univ Fed Goias, Escola Engn Eletr, BR-74001970 Goiania, Go, Brazil
[2] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil
[3] Univ Catolica Goias, BR-74605220 Goiania, Go, Brazil
来源
PHYSICA STATUS SOLIDI B-BASIC RESEARCH | 2002年 / 232卷 / 01期
关键词
D O I
10.1002/1521-3951(200207)232:1<76::AID-PSSB76>3.0.CO;2-N
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The intrasubband pair-correlation function, g(x), for a quasi-one-dimensional electron gas confined in a GaAs-AlxGa1-xAs rectangular quantum wire within the random-phase approximation (RPA) is calculated for several values of the potential barrier height and wire width. We have studied the dependence of the pair-correlation function on the electronic density, and delimited the region where the RPA approach gives physically acceptable results, i.e. the electronic density value where g(x) possesses positive values for small interparticle separations. The critical density in creases with increasing potential barrier height or decreasing wire width.
引用
收藏
页码:76 / 80
页数:5
相关论文
共 50 条
  • [31] Magnetophonon resonance of quasi-two-dimensional and quasi-one-dimensional electronic systems in tilted magnetic fields
    Suzuki, A
    Ogawa, M
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (21) : 4659 - 4676
  • [32] Superfluid density in quasi-one-dimensional systems
    Kotani, A.
    Yamashita, K.
    Hirashima, D. S.
    PHYSICAL REVIEW B, 2011, 83 (17)
  • [33] PRECURSOR CLUSTERS IN QUASI-ONE-DIMENSIONAL SYSTEMS
    AKSENOV, VL
    DIDYK, AY
    PHYSICS LETTERS A, 1984, 105 (07) : 368 - 370
  • [34] LOCALIZATION AND INTERACTION IN QUASI-ONE-DIMENSIONAL SYSTEMS
    APEL, W
    RICE, TM
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1985, 121 (1-4): : 382 - 382
  • [35] ON QUASI-ONE-DIMENSIONAL SUPERFLUIDITY IN BOSE SYSTEMS
    SHEVCHENKO, SI
    FIZIKA NIZKIKH TEMPERATUR, 1988, 14 (10): : 1011 - 1027
  • [36] Mott transition in quasi-one-dimensional systems
    Moukouri, S.
    Eidelstein, Eitan
    PHYSICAL REVIEW B, 2011, 84 (19)
  • [37] Unconventional superfluidity in quasi-one-dimensional systems
    Uchino, Shun
    Tokuno, Akiyuki
    Giamarchi, Thierry
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [38] Critical current of a quasi-one-dimensional superconducting wire
    Chang, LF
    Chaudhuri, S
    Bagwell, PF
    PHYSICAL REVIEW B, 1996, 54 (13) : 9399 - 9407
  • [39] Critical flow and dissipation in a quasi-one-dimensional superfluid
    Duc, Pierre-Francois
    Savard, Michel
    Petrescu, Matei
    Rosenow, Bernd
    Del Maestro, Adrian
    Gervais, Guillaume
    SCIENCE ADVANCES, 2015, 1 (04):
  • [40] ANDERSON LOCALIZATION FOR ONE-DIMENSIONAL AND QUASI-ONE-DIMENSIONAL SYSTEMS
    DELYON, F
    LEVY, Y
    SOUILLARD, B
    JOURNAL OF STATISTICAL PHYSICS, 1985, 41 (3-4) : 375 - 388