Solid-State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide-Based All-Solid-State Lithium Metal Batteries

被引:201
|
作者
Wang, Changhong [1 ]
Adair, Keegan R. [1 ]
Liang, Jianwen [1 ]
Li, Xiaona [1 ]
Sun, Yipeng [1 ]
Li, Xia [1 ]
Wang, Jiwei [1 ]
Sun, Qian [1 ]
Zhao, Feipeng [1 ]
Lin, Xiaoting [1 ]
Li, Ruying [1 ]
Huang, Huan [2 ]
Zhang, Li [3 ]
Yang, Rong [3 ]
Lu, Shigang [3 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, 1151 Richmond St, London, ON N6A 3K7, Canada
[2] Glabat Solid State Battery Inc, 700 Collip Circle, London, ON N6G 4X8, Canada
[3] China Automot Battery Res Inst Co Ltd, 5th Floor,43 Min Bldg,North Sanhuan Middle Rd, Beijing 100088, Peoples R China
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
all-solid-state lithium metal batteries; Li metal; plastic crystal electrolytes; sulfide electrolytes; SUPERIONIC CONDUCTORS; LI METAL; PERFORMANCE; POLYMER; INTERFACE; LICOO2; ANODE; SUCCINONITRILE; LI10GEP2S12;
D O I
10.1002/adfm.201900392
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state lithium metal batteries (ASSLMBs) have attracted significant attention due to their superior safety and high energy density. However, little success has been made in adopting Li metal anodes in sulfide electrolyte (SE)-based ASSLMBs. The main challenges are the remarkable interfacial reactions and Li dendrite formation between Li metal and SEs. In this work, a solid-state plastic crystal electrolyte (PCE) is engineered as an interlayer in SE-based ASSLMBs. It is demonstrated that the PCE interlayer can prevent the interfacial reactions and lithium dendrite formation between SEs and Li metal. As a result, ASSLMBs with LiFePO4 exhibit a high initial capacity of 148 mAh g(-1) at 0.1 C and 131 mAh g(-1) at 0.5 C (1 C = 170 mA g(-1)), which remains at 122 mAh g(-1) after 120 cycles at 0.5 C. All-solid-state Li-S batteries based on the polyacrylonitrile-sulfur composite are also demonstrated, showing an initial capacity of 1682 mAh g(-1). The second discharge capacity of 890 mAh g(-1) keeps at 775 mAh g(-1) after 100 cycles. This work provides a new avenue to address the interfacial challenges between Li metal and SEs, enabling the successful adoption of Li metal in SE-based ASSLMBs with high energy density.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Preparation of Lithium Sulfide-Based Cathode Materials and Application to All-Solid-State Batteries
    Matsuda A.
    Hikima K.
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2024, 71 (03): : 75 - 80
  • [32] Sulfide-Based Flexible Solid Electrolyte Enhancing Cycling Performance of All-Solid-State Lithium Batteries
    Hong, Seung-Bo
    Jang, Yoo-Rim
    Jung, Yun-Chae
    Cho, Woosuk
    Kim, Dong-Won
    ACS APPLIED ENERGY MATERIALS, 2024, : 5193 - 5201
  • [33] An Effective Catholyte for Sulfide-Based All-Solid-State Batteries Utilizing Gas Absorbents
    Choi, Hyunbeen
    Cho, Sungjin
    Kim, Yoon-Seong
    Cho, Jun Sic
    Kim, Haesol
    Lee, Hyungjin
    Ko, Sumin
    Kim, Kyungjun
    Lee, Sang-Min
    Hong, Seung-Tae
    Choi, Chang Hyuck
    Seo, Dong-Hwa
    Park, Soojin
    SMALL, 2024,
  • [34] Atomic Layer Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries
    Wang, Biqiong
    Liu, Jian
    Banis, Mohammad Norouzi
    Sun, Qian
    Zhao, Yang
    Li, Ruying
    Sham, Tsun-Kong
    Sun, Xueliang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (37) : 31786 - 31793
  • [35] Exploring the concordant solid-state electrolytes for all-solid-state lithium-sulfur batteries
    Zhu, Xinxin
    Jiang, Wei
    Zhao, Shu
    Huang, Renzhi
    Ling, Min
    Liang, Chengdu
    Wang, Liguang
    NANO ENERGY, 2022, 96
  • [36] Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries
    Xu, J.
    Liu, L.
    Yao, N.
    Wu, F.
    Li, H.
    Chen, L.
    MATERIALS TODAY NANO, 2019, 8
  • [37] Composite solid electrolytes for all-solid-state lithium batteries
    Dirican, Mahmut
    Yan, Chaoyi
    Zhu, Pei
    Zhang, Xiangwu
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 136 (27-46): : 27 - 46
  • [38] Li metal anode interface in sulfide-based all-solid-state Li batteries
    Li, Jingyan
    Luo, Jiayao
    Li, Xiang
    Fu, Yongzhu
    Zhu, Jinhui
    Zhuang, Xiaodong
    ECOMAT, 2023, 5 (08)
  • [39] Unexpected pressure effects on sulfide-based polymer-in-ceramic solid electrolytes for all-solid-state batteries
    Choi, Hoiju
    Kim, Minjae
    Lee, Hyobin
    Jung, Seungwon
    Lee, Young-Gi
    Lee, Yong Min
    Cho, Kuk Young
    NANO ENERGY, 2022, 102
  • [40] Facile Protection of Lithium Metal for All-Solid-State Batteries
    Delaporte, Nicolas
    Guerfi, Abdelbast
    Demers, Hendrix
    Lorrmann, Henning
    Paolella, Andrea
    Zaghib, Karim
    CHEMISTRYOPEN, 2019, 8 (02): : 192 - 195