Simple security proof of quantum key distribution based on complementarity

被引:189
|
作者
Koashi, M. [1 ,2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Div Mat Phys, Osaka 5608531, Japan
[2] CREST Photon Quantum Informat Project, Kawaguchi, Saitama 3310012, Japan
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
UNCONDITIONAL SECURITY; CRYPTOGRAPHY;
D O I
10.1088/1367-2630/11/4/045018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an approach to the unconditional security of quantum key distribution protocols based on a complementarity argument. The approach is applicable to, but not limited to, every case that has been treated via the argument by Shor and Preskill based on entanglement distillation, with a benefit of decoupling of the error correction from the privacy amplification. It can also treat cases with uncharacterized apparatuses. We derive a secure key rate for the Bennett-Brassard-1984 protocol with an arbitrary source characterized only by a single parameter representing the basis dependence.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Simple security proof of twin-field type quantum key distribution protocol
    Marcos Curty
    Koji Azuma
    Hoi-Kwong Lo
    npj Quantum Information, 5
  • [12] Simple security proof of twin-field type quantum key distribution protocol
    Curty, Marcos
    Azuma, Koji
    Lo, Hoi-Kwong
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [13] A proof of security of quantum key distribution in probabilistic clone scheme
    Zhao, SM
    Li, F
    Zheng, BY
    2003 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY, VOL 1 AND 2, PROCEEDINGS, 2003, : 1507 - 1509
  • [14] Security Proof of a Semi-Quantum Key Distribution Protocol
    Krawec, Walter O.
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 686 - 690
  • [15] SECURITY PROOF OF QUANTUM KEY DISTRIBUTION WITH DETECTION EFFICIENCY MISMATCH
    Fung, Chi-Hang Fred
    Tamaki, Kryoshi
    Qi, Bing
    Lo, Hoi-Kwong
    Ma, Xiongfeng
    QUANTUM INFORMATION & COMPUTATION, 2009, 9 (1-2) : 131 - 165
  • [16] Security proof for quantum key distribution using qudit systems
    Sheridan, Lana
    Scarani, Valerio
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [17] Security proof for variable-length quantum key distribution
    Tupkary, Devashish
    Tan, Ernest Y. -Z.
    Luetkenhaus, Norbert
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [18] Security proof of quantum key distribution with detection efficiency mismatch
    Fung, Chi-Hang Fred
    Tamaki, Kiyoshi
    Qi, Bing
    Lo, Hoi-Kwong
    Xiongfeng, Ma.
    Quantum Information and Computation, 2009, 9 (1-2): : 131 - 165
  • [19] A SIMPLER SECURITY PROOF FOR 6-STATE QUANTUM KEY DISTRIBUTION
    Akyuz, Kaan
    Skoric, Boris
    QUANTUM INFORMATION & COMPUTATION, 2023, 23 (11-12) : 949 - 960
  • [20] A SIMPLER SECURITY PROOF FOR 6-STATE QUANTUM KEY DISTRIBUTION
    Akyuz K.
    Škorić B.
    Quantum Information and Computation, 2023, 23 (11-12): : 949 - 960