Quantifications of the Two "Flavours" of El Nino using Upper-Ocean Heat Content

被引:3
|
作者
Wu, Zhiwei [1 ,2 ]
Chen, Shengjie [3 ]
He, Jinhai [1 ,2 ]
Chen, Hua [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Minist Educ, Earth Syst Modeling Ctr, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Minist Educ, Key Lab Meteorol Disaster, Nanjing 210044, Jiangsu, Peoples R China
[3] Jiangsu Meteorol Observ, Nanjing 210008, Jiangsu, Peoples R China
关键词
ENSO; upper-ocean heat content; interannual variability; air-sea coupling; SEA-SURFACE TEMPERATURE; WESTERN NORTH PACIFIC; ASIAN SUMMER MONSOON; RECHARGE PARADIGM; ENSO; MODOKI; TELECONNECTIONS; VARIABILITY; ANOMALIES; IMPACTS;
D O I
10.1080/07055900.2014.942593
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The sea surface temperature (SST) or sea level pressure (SLP) has usually been used to measure the strength of El Nino-Southern Oscillation (ENSO) events. In this study, two new indices, based on the upper-ocean heat content (HC), are proposed to quantify the two flavours of El Nino (i.e., the Cold Tongue El Nino (CTE) and Warm Pool El Nino (WPE)). Compared with traditional SST or SLP indices, the new HC-based indices can distinguish CTE and WPE events much better and also represent the two leading modes of the interannual variability of the atmosphere-ocean coupled system in the tropical Indo-Pacific region. The two leading modes are obtained by performing multivariate Empirical Orthogonal Function analysis on two oceanic variables (SST and HC) over the tropical Pacific (30 degrees S-30 degrees N, 120 degrees E-80 degrees W) and six atmospheric variables (outgoing longwave radiation, SLP, streamfunction, and velocity potential at 850hPa and 200hPa) over the tropical Indo-Pacific region (30 degrees S-30 degrees N, 60 degrees E-80 degrees W) for the period 1980-2010. Because the two new HC-based indices are capable of better depicting coherent variations between the ocean and atmosphere, they can provide a supplementary tool for ENSO monitoring of and climate research into the two flavours of El Nino. Resume[Traduit par la redaction] La force des evenements El Nino-oscillation australe a habituellement ete mesuree en fonction de la temperature de la surface de la mer (TSM) ou de la pression au niveau de la mer (PNM). Dans cette etude, nous proposons deux nouveaux indices bases sur le contenu en chaleur (CC) de la couche superieure de l'ocean pour quantifier les deux << saveurs >> de l'El Nino [c'est-a-dire l'El Nino a langue froide (ELF) et l'El Nino a bassin chaud (EBC)]. Comparativement aux indices TSM ou PNM habituels, les nouveaux indices bases sur le CC peuvent differencier les evenements ELF et EBC beaucoup mieux et representent aussi les deux modes predominants de la variabilite interannuelle du systeme couple atmosphere-ocean dans la region indopacifique. Nous obtenons les deux modes predominants en effectuant une analyse multivariee en composantes principales sur deux variables oceaniques (TSM et CC) dans le Pacifique tropical (30 degrees S-30 degrees N, 120 degrees E-80 degrees O) et six variables atmospheriques (rayonnement sortant de grandes longueurs d'onde, PNM, fonction de courant et potentiel de vitesse a 850 et 200hPa) dans la region indopacifique tropicale (30 degrees S-30 degrees N, 60 degrees E-80 degrees O) durant la periode 1980-2010. Etant donne que les deux nouveaux indices bases sur le CC peuvent mieux representer les variations coherentes entre l'ocean et l'atmosphere, ils peuvent fournir un outil supplementaire pour la surveillance des episodes El Nino des deux saveurs et pour les recherches climatologiques s'y rattachant.
引用
收藏
页码:351 / 362
页数:12
相关论文
共 50 条
  • [21] Dissimilarity among Ocean Reanalyses in Equatorial Pacific Upper-Ocean Heat Content and Its Relationship with ENSO
    Cheung, Paxson K. Y.
    Zhou, Wen
    Wang, Dongxiao
    Leung, Marco Y. T.
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2022, 39 (01) : 67 - 79
  • [22] Dissimilarity among Ocean Reanalyses in Equatorial Pacific Upper-Ocean Heat Content and Its Relationship with ENSO
    Paxson K. Y. Cheung
    Wen Zhou
    Dongxiao Wang
    Marco Y. T. Leung
    [J]. Advances in Atmospheric Sciences, 2022, 39 : 67 - 79
  • [23] Low-Frequency SST and Upper-Ocean Heat Content Variability in the North Atlantic
    Buckley, Martha W.
    Ponte, Rui M.
    Forget, Gael
    Heimbach, Patrick
    [J]. JOURNAL OF CLIMATE, 2014, 27 (13) : 4996 - 5018
  • [24] Estimating Annual Global Upper-Ocean Heat Content Anomalies despite Irregular In Situ Ocean Sampling
    Lyman, John M.
    Johnson, Gregory C.
    [J]. JOURNAL OF CLIMATE, 2008, 21 (21) : 5629 - 5641
  • [25] Improving El Nino prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content
    Clarke, AJ
    Van Gorder, S
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (07) : 52 - 1
  • [26] Variability of Sea Level and Upper-Ocean Heat Content in the Indian Ocean: Effects of Subtropical Indian Ocean Dipole and ENSO
    Zhang, Lei
    Han, Weiqing
    Li, Yuanlong
    Lovenduski, Nicole S.
    [J]. JOURNAL OF CLIMATE, 2019, 32 (21) : 7227 - 7245
  • [27] Intraseasonal variability of the tropical Pacific subsurface temperature in the two flavours of El Nino
    Feng, Junqiao
    Wang, Qingye
    Hu, Shijian
    Hu, Dunxin
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2016, 36 (02) : 867 - 884
  • [28] Seasonal forecast skill of upper-ocean heat content in coupled high-resolution systems
    McAdam, Ronan
    Masina, Simona
    Balmaseda, Magdalena
    Gualdi, Silvio
    Senan, Retish
    Mayer, Michael
    [J]. CLIMATE DYNAMICS, 2022, 58 (11-12) : 3335 - 3350
  • [29] Implication of the South China Sea Throughflow for the Interannual Variability of the Regional Upper-Ocean Heat Content
    刘钦燕
    王东晓
    [J]. Advances in Atmospheric Sciences, 2012, 29 (01) : 54 - 62
  • [30] Seasonal forecast skill of upper-ocean heat content in coupled high-resolution systems
    Ronan McAdam
    Simona Masina
    Magdalena Balmaseda
    Silvio Gualdi
    Retish Senan
    Michael Mayer
    [J]. Climate Dynamics, 2022, 58 : 3335 - 3350