Adaptive Synchronization for a Class of Uncertain Fractional-Order Neural Networks

被引:56
|
作者
Liu, Heng [1 ,2 ]
Li, Shenggang [1 ]
Wang, Hongxing [2 ]
Huo, Yuhong [2 ]
Luo, Junhai [3 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710119, Peoples R China
[2] Huainan Normal Univ, Dept Appl Math, Huainan 232038, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional-order neural network; adaptive control; synchronization; FINITE-TIME STABILITY; LYAPUNOV FUNCTIONS; PARAMETERS; CHAOS;
D O I
10.3390/e17107185
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, synchronization for a class of uncertain fractional-order neural networks subject to external disturbances and disturbed system parameters is studied. Based on the fractional-order extension of the Lyapunov stability criterion, an adaptive synchronization controller is designed, and fractional-order adaptation law is proposed to update the controller parameter online. The proposed controller can guarantee that the synchronization errors between two uncertain fractional-order neural networks converge to zero asymptotically. By using some proposed lemmas, the quadratic Lyapunov functions are employed in the stability analysis. Finally, numerical simulations are presented to confirm the effectiveness of the proposed method.
引用
收藏
页码:7185 / 7200
页数:16
相关论文
共 50 条
  • [31] Fractional-order cellular neural networks adaptive synchronization control circuit design and simulation
    Zhang X.-H.
    Yu L.-H.
    [J]. Kong Zhi Li Lun Yu Ying Yong, 6 (753-762): : 753 - 762
  • [32] Synchronization Analysis of Fractional-Order Neural Networks With Adaptive Intermittent-Active Control
    Han, Xin
    Cheng, Fengna
    Tang, Shan
    Zhang, Yuyan
    Fu, Yao
    Cheng, Weiguo
    Xu, Liang
    [J]. IEEE Access, 2022, 10 : 75097 - 75104
  • [33] Adaptive Synchronization of a Novel Fractional-order Hyperchaotic System with Uncertain Parameters
    Yang, Ningning
    Wu, Chaojun
    Liu, Chongxin
    Liu, Kai
    [J]. PROCEEDINGS OF THE 2015 7TH IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) AND ROBOTICS, AUTOMATION AND MECHATRONICS (RAM), 2015,
  • [34] Output synchronization analysis of coupled fractional-order neural networks with fixed and adaptive couplings
    Peng Liu
    Yunliu Li
    Junwei Sun
    Yanfeng Wang
    [J]. Neural Computing and Applications, 2023, 35 : 517 - 528
  • [35] Adaptive synchronization of fractional-order memristor-based neural networks with time delay
    Haibo Bao
    Ju H. Park
    Jinde Cao
    [J]. Nonlinear Dynamics, 2015, 82 : 1343 - 1354
  • [36] Adaptive synchronization of fractional-order memristor-based neural networks with time delay
    Bao, Haibo
    Park, Ju H.
    Cao, Jinde
    [J]. NONLINEAR DYNAMICS, 2015, 82 (03) : 1343 - 1354
  • [37] Synchronization Analysis of Fractional-Order Neural Networks With Adaptive Intermittent-Active Control
    Han, Xin
    Cheng, Fengna
    Tang, Shan
    Zhang, Yuyan
    Fu, Yao
    Cheng, Weiguo
    Xu, Liang
    [J]. IEEE ACCESS, 2022, 10 : 75097 - 75104
  • [38] Output synchronization analysis of coupled fractional-order neural networks with fixed and adaptive couplings
    Liu, Peng
    Li, Yunliu
    Sun, Junwei
    Wang, Yanfeng
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (01): : 517 - 528
  • [39] Adaptive Synchronization of Fractional-Order Uncertain Complex-Valued Competitive Neural Networks under the Non-Decomposition Method
    Chen, Shenglong
    Luo, Xupeng
    Yang, Jikai
    Li, Zhiming
    Li, Hongli
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [40] Adaptive projective synchronization for fractional-order T-S fuzzy neural networks with time-delay and uncertain parameters
    Song, Shuai
    Song, Xiaona
    Balsera, Ines Tejado
    [J]. OPTIK, 2017, 129 : 140 - 152