Generalized Reversibility of Cellular Automata with Boundaries

被引:0
|
作者
Zhang, Kuize [1 ]
Zhang, Lijun [2 ]
机构
[1] Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China
[2] Northwestern Polytech Univ, Sch Marine Technol, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellular automaton; Semi-tensor product; Drazin inverse; Generalized reversibility; Configuration canonical form; INVERSE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, cellular automata with boundaries are addressed by using the theories of semi-tensor product and Drazin inverse of matrices. For a cellular automaton with boundaries, a dynamical system model is constructed, then a necessary and sufficient condition for the reversibility is given, and a concept of generalized inverse cellular automaton that characterizes the local energy conservation is presented. Besides, a representation for the (generalized) inverse cellular automaton together with a unified algorithm to calculate it is given. Some examples are given to illustrate the algorithm.
引用
收藏
页码:418 / 423
页数:6
相关论文
共 50 条
  • [31] Block invariance and reversibility of one dimensional linear cellular automata
    MacLean, Stephanie
    Montalva-Medel, Marco
    Goles, Eric
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2019, 105 : 83 - 101
  • [32] Reversibility of Linear Cellular Automata on Cayley Trees with Periodic Boundary Condition
    Chang, Chih-Hung
    Su, Jing-Yi
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (06): : 1335 - 1353
  • [33] A Note on the Reversibility of 2D Cellular Automata on Hexagonal Grids
    Augustynowicz, Antoni
    Baetens, Jan M.
    De Baets, Bernard
    Dzedzej, Adam
    Nenca, Anna
    Wolnik, Barbara
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2018, 13 (5-6) : 521 - 526
  • [34] Cellular automata over generalized Cayley graphs
    Arrighi, Pablo
    Martiel, Simon
    Nesme, Vincent
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2018, 28 (03) : 340 - 383
  • [35] The reversibility of (2r+1)-cyclic rule cellular automata
    Siap, I.
    Akin, H.
    Koroglu, M. E.
    [J]. TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, 4 (02): : 215 - 225
  • [36] Reversibility Algorithm for 2D Cellular Automata with Reflective Condition
    Redjepov, S.
    Acar, E.
    Uguz, S.
    [J]. ACTA PHYSICA POLONICA A, 2018, 134 (01) : 454 - 456
  • [37] Parallel optimization based on generalized cellular automata
    Dianxun Shuai
    Li D. Xu
    Bin Zhang
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 3804 - +
  • [38] Reversibility and quantum coherence in one-dimensional quantum cellular automata
    Centrone, Federico
    Tassi, Camillo
    Barbieri, Marco
    Serafini, Alessio
    [J]. PHYSICAL REVIEW A, 2018, 98 (01)
  • [39] CONNECTIVITY AND REVERSIBILITY IN AUTOMATA
    BAVEL, Z
    MULLER, DE
    [J]. JOURNAL OF THE ACM, 1970, 17 (02) : 231 - &
  • [40] Detailed Analysis of Equal Length Cellular Automata with Fixed Boundaries
    Mitra, Arnab
    Teodorescu, Horia-Nicolai
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2016, 11 (5-6) : 425 - 448