The Dirichlet problem for nonlocal operators with singular kernels: Convex and nonconvex domains

被引:24
|
作者
Ros-Oton, Xavier [1 ]
Valdinoci, Enrico [2 ,3 ,4 ]
机构
[1] Univ Texas Austin, Dept Math, 2515 Speedway, Austin, TX 78751 USA
[2] Weierstrass Inst Angew Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[3] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[4] CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, Italy
关键词
Regularity theory; Integro-differential equations; Fractional Laplacian; Anisotropic media; Rough kernels; REGULARITY;
D O I
10.1016/j.aim.2015.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the interior regularity of solutions to the Dirichlet problem Lu = g in Omega, u = 0 in R-n\Omega, for anisotropic operators of fractional type Lu(x) = integral(+infinity)(0) dp integral(Sn-1) da(w) 2u(x) - u(x + rho w) - u(x - rho w)/rho(1+2s). Here, a is any measure on Sn-1 (a prototype example for L is given by the sum of one-dimensional fractional Laplacians in fixed, given directions). When a is an element of C-infinity(Sn-1) and g is c(infinity)(Omega), solutions are known to be C-infinity inside Omega (but not up to the boundary). However, when a is a general measure, or even when a is L-infinity(s(n-1)), solutions are only known to be C-3s inside Omega. We prove here that, for general measures a, solutions are C1+3s-epsilon inside Omega for all epsilon > 0 whenever Omega is convex. When a is an element of L-infinity(Sn-1), we show that the same holds in all C-1,C-1 domains. In particular, solutions always possess a classical first derivative. The assumptions on the domain are sharp, since if the domain is not convex and the measure a is singular, we construct an explicit counterexample for which u is not C3s+epsilon for any epsilon > 0 - even if g and Omega are C-infinity. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:732 / 790
页数:59
相关论文
共 50 条
  • [31] To a nonlocal generalization of the Dirichlet problem
    Givi Berikelashvili
    Journal of Inequalities and Applications, 2006
  • [32] Remarks on the Nonlocal Dirichlet Problem
    Grzywny, Tomasz
    Kassmann, Moritz
    Lezaj, Lukasz
    POTENTIAL ANALYSIS, 2021, 54 (01) : 119 - 151
  • [33] Asymptotically optimal interface solvers for the biharmonic Dirichlet problem on convex polygonal domains
    Khoromskij, BN
    Schmidt, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 231 - 234
  • [34] Remarks on the Nonlocal Dirichlet Problem
    Tomasz Grzywny
    Moritz Kassmann
    Łukasz Leżaj
    Potential Analysis, 2021, 54 : 119 - 151
  • [35] To a nonlocal generalization of the Dirichlet problem
    Berikelashvili, Givi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1) : 1 - 6
  • [36] COMPUTING DISTANCE TRANSFORMATIONS IN CONVEX AND NONCONVEX DOMAINS
    PIPER, J
    GRANUM, E
    PATTERN RECOGNITION, 1987, 20 (06) : 599 - 615
  • [37] Certain operators with rough singular kernels
    Chen, JC
    Fan, DS
    Ying, YM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2003, 55 (03): : 504 - 532
  • [38] Kernels and ranks of Hankel operators on the Dirichlet spaces
    Lee, Young Joo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 263 - 278
  • [39] Kernels and spectrum of Toeplitz operators on the Dirichlet space
    Li, Yongning
    Zhang, Ziliang
    Zheng, Dechao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) : 894 - 919
  • [40] THE DIRICHLET PROBLEM FOR THE CONVEX ENVELOPE
    Oberman, Adam M.
    Silvestre, Luis
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (11) : 5871 - 5886