Information entropy, rough entropy and knowledge granulation in incomplete information systems

被引:236
|
作者
Liang, J. [1 ]
Shi, Z.
Li, D.
Wierman, M. J.
机构
[1] Shanxi Univ, Sch Comp & Informat Technol, Minist Educ, Key Lab Computat Intelligence & Chinese Informat, Taiyuan 030006, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100080, Peoples R China
[3] Creighton Univ, Omaha, NE 68005 USA
基金
中国国家自然科学基金;
关键词
incomplete information systems; rough sets; information entropy; rough entropy; knowledge granulation;
D O I
10.1080/03081070600687668
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Rough set theory is a relatively new mathematical tool for use in computer applications in circumstances that are characterized by vagueness and uncertainty. Rough set theory uses a table called an information system, and knowledge is defined as classifications of an information system. In this paper, we introduce the concepts of information entropy, rough entropy, knowledge granulation and granularity measure in incomplete information systems, their important properties are given, and the relationships among these concepts are established. The relationship between the information entropy E( A) and the knowledge granulation GK(A) of knowledge A can be expressed as E(A) + GK(A) = 1, the relationship between the granularity measure G(A) and the rough entropy E-r(A) of knowledge A can be expressed as G(A) + E-r(A) = log(2)vertical bar U vertical bar. The conclusions in Liang and Shi (2004) are special instances in this paper. Furthermore, two inequalities -log(2)GK(A) <= G(A) and E-r(A) <= log(2)(vertical bar U vertical bar(1 - E(A))) about the measures GK, G, E and E-r are obtained. These results will be very helpful for understanding the essence of uncertainty measurement, the significance of an attribute, constructing the heuristic function in a heuristic reduct algorithm and measuring the quality of a decision rule in incomplete information systems.
引用
收藏
页码:641 / 654
页数:14
相关论文
共 50 条
  • [21] Information granules and entropy theory in information systems
    JiYe Liang
    YuHua Qian
    [J]. Science in China Series F: Information Sciences, 2008, 51 : 1427 - 1444
  • [22] Information granules and entropy theory in information systems
    Liang JiYe
    Qian YuHua
    [J]. SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (10): : 1427 - 1444
  • [23] Information granules and entropy theory in information systems
    LIANG JiYe & QIAN YuHua Key Laboratory of Computational Intelligence and Chinese Information Processing
    School of Computer & Information Technology
    [J]. Science China(Information Sciences), 2008, (10) : 1427 - 1444
  • [24] Information entropy in fragmenting systems
    Balenzuela, P
    Dorso, CO
    [J]. PHYSICAL REVIEW C, 2002, 65 (05): : 4
  • [25] Entropy and information of open systems
    Klimontovich, YL
    [J]. USPEKHI FIZICHESKIKH NAUK, 1999, 169 (04): : 443 - 452
  • [26] INFORMATION, ENTROPY AND VARIOUS SYSTEMS
    RYAN, JPF
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1972, 36 (01) : 139 - &
  • [27] Information Fusion in a Multi-Source Incomplete Information System Based on Information Entropy
    Li, Mengmeng
    Zhang, Xiaoyan
    [J]. ENTROPY, 2017, 19 (11)
  • [28] ON ENTROPY AND INCOMPLETE INFORMATION IN IRREVERSIBLE HEAT-FLOW
    DAY, WA
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1995, 46 : S272 - S293
  • [29] Tsallis Entropy, Escort Probability and the Incomplete Information Theory
    Darooneh, Amir Hossein
    Naeimi, Ghassem
    Mehri, Ali
    Sadeghi, Parvin
    [J]. ENTROPY, 2010, 12 (12) : 2497 - 2503
  • [30] Knowledge acquisition in incomplete fuzzy information systems via the rough set approach
    Wu, WZ
    Zhang, WX
    Li, HZ
    [J]. EXPERT SYSTEMS, 2003, 20 (05) : 280 - 286