Penalized estimation in finite mixture of ultra-high dimensional regression models

被引:1
|
作者
Tang, Shiyi [1 ]
Zheng, Jiali [1 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
关键词
Finite mixture of regression models; ultra-high dimensional regression; EM algorithm; variable selection; order selection;
D O I
10.1080/03610926.2020.1851717
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a penalized estimation method for finite mixture of ultra-high dimensional regression models. A two-step procedure is explored. Firstly, we conduct order selection with the number of components unknown. Then variable selection is applied to ultra-high dimensional regression models. A specific EM algorithm is designed to maximize penalized log-likelihood function. We demonstrate our method by numerical simulations which performs well. Further, an empirical study of return on equity (ROE) prediction is shown to consolidate our methodology.
引用
收藏
页码:5971 / 5992
页数:22
相关论文
共 50 条
  • [41] Financial correlations at ultra-high frequency: theoretical models and empirical estimation
    Mastromatteo, I.
    Marsili, M.
    Zoi, P.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2011, 80 (02): : 243 - 253
  • [42] On Estimation and Selection of Autologistic Regression Models via Penalized Pseudolikelihood
    Fu, Rao
    Thurman, Andrew L.
    Chu, Tingjin
    Steen-Adams, Michelle M.
    Zhu, Jun
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2013, 18 (03) : 429 - 449
  • [43] On Estimation and Selection of Autologistic Regression Models via Penalized Pseudolikelihood
    Rao Fu
    Andrew L. Thurman
    Tingjin Chu
    Michelle M. Steen-Adams
    Jun Zhu
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18 : 429 - 449
  • [44] Adaptive penalized quantile regression for high dimensional data
    Zheng, Qi
    Gallagher, Colin
    Kulasekera, K. B.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (06) : 1029 - 1038
  • [45] Nonnegative adaptive lasso for ultra-high dimensional regression models and a two-stage method applied in financial modeling
    Yang, Yuehan
    Wu, Lan
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 174 : 52 - 67
  • [46] A Robust High-Dimensional Estimation of Multinomial Mixture Models
    Azam Sabbaghi
    Farzad Eskandari
    Hamid Reza Navabpoor
    [J]. Journal of Statistical Theory and Applications, 2021, 20 : 21 - 32
  • [47] Variable selection in finite mixture of regression models
    Khalili, Abbas
    Chen, Jiahua
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) : 1025 - 1038
  • [48] A Robust High-Dimensional Estimation of Multinomial Mixture Models
    Sabbaghi, Azam
    Eskandari, Farzad
    Navabpoor, Hamid Reza
    [J]. JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2021, 20 (01): : 21 - 32
  • [49] Finite mixture of regression models for a stratified sample
    Abdalla, Abdelbaset
    Michael, Semhar
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (14) : 2782 - 2800
  • [50] Finite mixture modeling of censored regression models
    Maria Karlsson
    Thomas Laitila
    [J]. Statistical Papers, 2014, 55 : 627 - 642