An application of semi-free resolutions

被引:1
|
作者
Ndombol, Bitjong [1 ]
Tcheka, Calvin [2 ]
机构
[1] Univ Yaounde I, POB 812, Yaounde, Cameroon
[2] Univ Dschang, POB 67, Dschang, Cameroon
关键词
Semi-free resolution; Hochschild homology; Free loop space coholomogy; Differential Tor; LOOP SPACE; COHOMOLOGY; ALGEBRAS;
D O I
10.1007/s40062-017-0185-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we use the notion of semi-free resolution to give a new proof of J. D. S. Jones' theorem (Invent Math 87:403-423, 1987) which establishes an isomorphism of graded vector spaces between the Hochschild homology and the cohomology of the free loop space of a topological space.
引用
收藏
页码:385 / 394
页数:10
相关论文
共 50 条
  • [1] An application of semi-free resolutions
    Bitjong Ndombol
    Calvin Tcheka
    [J]. Journal of Homotopy and Related Structures, 2018, 13 : 385 - 394
  • [2] SEMI-FREE GROUP ACTIONS
    STONG, RE
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1979, 23 (04) : 666 - 680
  • [3] Dynamics of Semi-Free Systems
    Michel Fayet
    [J]. Multibody System Dynamics, 2002, 8 : 185 - 196
  • [4] Dynamics of semi-free systems
    Fayet, M
    [J]. MULTIBODY SYSTEM DYNAMICS, 2002, 8 (02) : 185 - 196
  • [5] SEMI-FREE CIRCLE ACTIONS ON SPHERES
    LEVINE, J
    [J]. INVENTIONES MATHEMATICAE, 1973, 22 (02) : 161 - 186
  • [6] COMMUTATION EQUATIONS IN SEMI-FREE GROUPS
    BAUDISCH, A
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1977, 29 (3-4): : 235 - 249
  • [7] YUGOSLAVIA ON THE ROAD TO SEMI-FREE ELECTIONS
    BURKS, RV
    STANKOVIC, SA
    [J]. OSTEUROPA, 1967, 17 (2-3): : 131 - 146
  • [8] SEMI-FREE ACTIONS WITH MANIFOLD ORBIT SPACES
    Harvey, John
    Kerin, Martin
    Shankar, Krishnan
    [J]. DOCUMENTA MATHEMATICA, 2020, 25 : 2085 - 2114
  • [9] FREE AND SEMI-FREE DIFFERENTIABLE ACTIONS ON HOMOTOPY SPHERES
    KAWAKUBO, K
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1969, 45 (08): : 651 - &
  • [10] Permanence criteria for semi-free profinite groups
    Bary-Soroker, Lior
    Haran, Dan
    Harbater, David
    [J]. MATHEMATISCHE ANNALEN, 2010, 348 (03) : 539 - 563