Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression Models

被引:2
|
作者
Andrade, Plinio [1 ]
Rifo, Laura [2 ]
Torres, Soledad [3 ]
Torres-Aviles, Francisco [4 ]
机构
[1] Univ Sao Paulo, Inst Math & Stat, BR-05508090 Sao Paulo, Brazil
[2] Univ Estadual Campinas, Inst Math & Stat, BR-13083859 Campinas, SP, Brazil
[3] Univ Valparaiso, CIMFAV, Fac Ingn, Valparaiso 2362905, Chile
[4] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Santiago 9170022, Chile
基金
巴西圣保罗研究基金会;
关键词
Gamma-modulated process; long memory; Bayesian inference; approximate Bayesian computation; MCMC algorithm; e-value;
D O I
10.3390/e17106576
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we propose a Bayesian methodology to make inferences for the memory parameter and other characteristics under non-standard assumptions for a class of stochastic processes. This class generalizes the Gamma-modulated process, with trajectories that exhibit long memory behavior, as well as decreasing variability as time increases. Different values of the memory parameter influence the speed of this decrease, making this heteroscedastic model very flexible. Its properties are used to implement an approximate Bayesian computation and MCMC scheme to obtain posterior estimates. We test and validate our method through simulations and real data from the big earthquake that occurred in 2010 in Chile.
引用
收藏
页码:6576 / 6597
页数:22
相关论文
共 50 条
  • [1] Fast and Flexible Bayesian Inference in Time-varying Parameter Regression Models
    Hauzenberger, Niko
    Huber, Florian
    Koop, Gary
    Onorante, Luca
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1904 - 1918
  • [2] Semiparametric Bayesian inference for regression models
    Seifu, Y
    Severini, TA
    Tanner, MA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 719 - 734
  • [3] Semiparametric Bayesian inference for time-varying parameter regression models with stochastic volatility
    Dimitrakopoulos, Stefanos
    [J]. ECONOMICS LETTERS, 2017, 150 : 10 - 14
  • [4] Bayesian Multimodel Inference for Geostatistical Regression Models
    Johnson, Devin S.
    Hoeting, Jennifer A.
    [J]. PLOS ONE, 2011, 6 (11):
  • [5] Gamma-modulated Wavelet Model for Internet of Things Traffic
    Li, Yuhong
    Huang, Yuanyuan
    Su, Xiang
    Riekki, Jukka
    Flores, Huber
    Sun, Chao
    Wei, Hanyu
    Wang, Hao
    Han, Lei
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2017,
  • [6] Option pricing under a Gamma-modulated diffusion process
    Iglesias P.
    San Martín J.
    Torres S.
    Viens F.
    [J]. Annals of Finance, 2011, 7 (2) : 199 - 219
  • [7] Adaptive Sparse Bayesian Regression with Variational Inference for Parameter Estimation
    Koda, Satoru
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2016, 2016, 10029 : 263 - 273
  • [8] Bayesian inference for additive mixed quantile regression models
    Yue, Yu Ryan
    Rue, Havard
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 84 - 96
  • [9] Data integrative Bayesian inference for mixtures of regression models
    Aflakparast, Mehran
    de Gunst, Mathisca
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2019, 68 (04) : 941 - 962
  • [10] Classical and Bayesian inference robustness in multivariate regression models
    Fernandez, C
    Osiewalski, J
    Steel, MFJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1434 - 1444