Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation

被引:54
|
作者
Olshevskiy, Alexander [1 ,2 ]
Dmitrochenko, Oleg [2 ,3 ]
Kim, Chang-Wan [1 ]
机构
[1] Konkuk Univ, Sch Mech Engn, Seoul 143701, South Korea
[2] Bryansk State Tech Univ, Bryansk 241035, Russia
[3] Lappeenranta Univ Technol, Dept Mech Engn, Lappeenranta 53850, Finland
来源
基金
俄罗斯基础研究基金会; 新加坡国家研究基金会;
关键词
absolute coordinate formulation; flexible multibody dynamics; large displacements; finite element method; solid elements; DIGITAL NOMENCLATURE CODE; FINITE-ELEMENTS; MULTIBODY SYSTEMS; BEAM ELEMENT; DEFORMATION; DYNAMICS;
D O I
10.1115/1.4024910
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The present paper contributes to the field of flexible multibody systems dynamics. Two new solid finite elements employing the absolute nodal coordinate formulation are presented. In this formulation, the equations of motion contain a constant mass matrix and a vector of generalized gravity forces, but the vector of elastic forces is highly nonlinear. The proposed solid eight node brick element with 96 degrees of freedom uses translations of nodes and finite slopes as sets of nodal coordinates. The displacement field is interpolated using incomplete cubic polynomials providing the absence of shear locking effect. The use of finite slopes describes the deformed shape of the finite element more exactly and, therefore, minimizes the number of finite elements required for accurate simulations. Accuracy and convergence of the finite element is demonstrated in nonlinear test problems of statics and dynamics.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] A piecewise beam element based on absolute nodal coordinate formulation
    Yu, Zuqing
    Lan, Peng
    Lu, Nianli
    NONLINEAR DYNAMICS, 2014, 77 (1-2) : 1 - 15
  • [32] A piecewise beam element based on absolute nodal coordinate formulation
    Zuqing Yu
    Peng Lan
    Nianli Lu
    Nonlinear Dynamics, 2014, 77 : 1 - 15
  • [33] A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation
    Dufva, KE
    Sopanen, JT
    Mikkola, AM
    JOURNAL OF SOUND AND VIBRATION, 2005, 280 (3-5) : 719 - 738
  • [34] Finite element analysis of the geometric stiffening effect using the absolute nodal coordinate formulation
    Garcia-Vallejo, Daniel
    Sugiyami, Hiroyuki
    Shabana, Ahmed A.
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 1187 - 1200
  • [35] Study of the centrifugal stiffening effect using the finite element absolute nodal coordinate formulation
    Berzeri, M
    Shabana, AA
    MULTIBODY SYSTEM DYNAMICS, 2002, 7 (04) : 357 - 387
  • [36] Study of the Centrifugal Stiffening Effect Using the Finite Element Absolute Nodal Coordinate Formulation
    Marcello Berzeri
    Ahmed A. Shabana
    Multibody System Dynamics, 2002, 7 : 357 - 387
  • [37] Absolute Nodal Coordinate Formulation-Based Shape-Sensing Approach for Large Deformation: Three-Dimensional Beam
    Wu, Maoqi
    Tan, Shujun
    Qie, Yuhang
    Guo, Junchao
    Yang, Hao
    Peng, Haijun
    AIAA JOURNAL, 2024, 62 (03) : 1218 - 1231
  • [38] Analysis of high-order quadrilateral plate elements based on the absolute nodal coordinate formulation for three-dimensional elasticity
    Ebel, Henrik
    Matikainen, Marko K.
    Hurskainen, Vesa-Ville
    Mikkola, Aki
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (06):
  • [39] A rational finite element method based on the absolute nodal coordinate formulation
    Graham G. Sanborn
    Ahmed A. Shabana
    Nonlinear Dynamics, 2009, 58 : 565 - 572
  • [40] A geometrically exact beam element based on the absolute nodal coordinate formulation
    Johannes Gerstmayr
    Marko K. Matikainen
    Aki M. Mikkola
    Multibody System Dynamics, 2008, 20