Can a Single Image Denoising Neural Network Handle All Levels of Gaussian Noise?

被引:20
|
作者
Wang, Yi-Qing [1 ]
Morel, Jean-Michel [1 ]
机构
[1] Ecole Normale Super, CMLA, F-94230 Cachan, France
关键词
Deep neural network; distribution invariance; image denoising; natural patch space;
D O I
10.1109/LSP.2014.2314613
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A recently introduced set of deep neural networks designed for the image denoising task achieves state-of-the-art performance. However, they are specialized networks in that each of them can handle just one noise level fixed in their respective training process. In this letter, by investigating the distribution invariance of the natural image patches with respect to linear transforms, we show how to make a single existing deep neural network work well across all levels of Gaussian noise, thereby allowing to significantly reduce the training time for a general-purpose neural network powered denoising algorithm.
引用
收藏
页码:1150 / 1153
页数:4
相关论文
共 50 条
  • [31] True wide convolutional neural network for image denoising
    Liu, Gang
    Dang, Min
    Liu, Jing
    Xiang, Ruotong
    Tian, Yumin
    Luo, Nan
    INFORMATION SCIENCES, 2022, 610 : 171 - 184
  • [32] Deep Neural Network Convolution for Natural Image Denoising
    Zarshenas, Amin
    Suzuki, Kenji
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 2534 - 2539
  • [33] BLIND DENOISING OF MIXED GAUSSIAN-IMPULSE NOISE BY SINGLE CNN
    Abiko, Ryo
    Ikehara, Masaaki
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1717 - 1721
  • [34] Infrared image denoising based on convolutional neural network
    Sun, Cheng
    Pan, Mingqiang
    Zhou, Bin
    Zhu, Zongjian
    2018 13TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2018, : 499 - 502
  • [35] Radiation Image Denoising Based on Convolutional Neural Network
    Sun Y.-W.
    Liu H.
    Cong P.
    Li L.-T.
    Xiang X.-C.
    Guo X.-J.
    Yuanzineng Kexue Jishu, 9 (1678-1682): : 1678 - 1682
  • [36] DenoisingNet: An Efficient Convolutional Neural Network for Image Denoising
    Li, Yang
    Miao, Zhuang
    Zhang, Rui
    Wang, Jiabao
    2019 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD 2019), 2019, : 409 - 413
  • [37] Pyramid dilated convolutional neural network for image denoising
    Jia, Xinlei
    Peng, Yali
    Li, Jun
    Xin, Yunhong
    Ge, Bao
    Liu, Shigang
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (02)
  • [38] PET Image Denoising Using Deep Neural Network
    Gong, Kuang
    Guan, Jiahui
    Liu, Chih-Chieh
    Qi, Jinyi
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [39] Detail retaining convolutional neural network for image denoising
    Li, Xiaoxia
    Xiao, Juan
    Zhou, Yingyue
    Ye, Yuanzheng
    Lv, Nianzu
    Wang, Xueyuan
    Wang, Shunli
    Gao, ShaoBing
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 71
  • [40] A noisy chaotic neural network approach to image denoising
    Yan, LP
    Wang, LP
    Yap, KH
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1229 - 1232