ERRATUM: Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity (vol 4, pg 4027, 2014)

被引:3
|
作者
Zhou, Juan
Tian, Guohui
Chen, Yajie
Shi, Yunhan
Tian, Chungui
Pan, Kai
Fu, Honggang
机构
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
关键词
D O I
10.1038/srep04321
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Core/shell heterostructure composite has great potential applications in photocatalytic field because the introduction of core can remarkably improve charge transport and enhance the electron-hole separation. Herein, hierarchical Bi2S3/In2S3 core/shell structured microspheres were prepared via a simple one-pot hydrothermal process based on different growth rate of the two kinds of sulphides. The results showed that, the as-prepared hierarchical Bi2S3/In2S3 core/shell heterostructure exhibits significant visible light photocatalytic activity for degradation of 2, 4-dichlorophenol. The introduction of Bi2S3 core can not only improve charge transport and enhance the electron-hole separation, but also broaden the visible light response. The hierarchical porous folwer-like shell of In2S3 could increase the specific surface area and remarkably enhanced the chemical stability of Bi2S3 against oxidation.
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Synthesis of Bi2S3 nanowires and their photocatalytic performance for hydrogen production
    Li, Xiaoyan
    Zhao, Rui
    Lang, Jun
    Zou, Hanjun
    Yang, Qi
    Huang, Deming
    Wei, Dezhi
    FUNCTIONAL MATERIALS LETTERS, 2022, 15 (05)
  • [42] Synthesis and photocatalytic properties of vertically aligned Bi2S3 platelets
    Tang, Chunjuan
    Zhang, Yongsheng
    Su, Jianfeng
    Wang, Changqing
    Sun, Ruirui
    Zhang, Jiao
    Li, Guanghai
    SOLID STATE SCIENCES, 2016, 51 : 24 - 29
  • [43] Sonochemistry synthesis of Bi2S3/CdS heterostructure with enhanced performance for photocatalytic hydrogen evolution
    Hao, Lin-Xing
    Chen, Gang
    Yu, Yao-Guang
    Zhou, Yan-Song
    Han, Zhong-Hui
    Liu, Yue
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (26) : 14479 - 14486
  • [44] Enhanced Photocatalytic Activity of BiVO4/Bi2S3/SnS2 Heterojunction under Visible Light
    Meng, Sopheak
    Ogawa, Takaya
    Okumura, Hideyuki
    Ishihara, Keiichi N.
    CATALYSTS, 2020, 10 (11) : 1 - 13
  • [45] Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity
    Ma, De-Kun
    Guan, Mei-Li
    Liu, Sen-Sen
    Zhang, Yan-Qing
    Zhang, Chang-Wei
    He, Yu-Xiang
    Huang, Shao-Ming
    DALTON TRANSACTIONS, 2012, 41 (18) : 5581 - 5586
  • [46] Electrochemical synthesis of ZnO/In2S3 core-shell nanowires for enhanced photoelectrochemical properties
    Braiek, Z.
    Brayek, A.
    Ghoul, M.
    Ben Taieb, S.
    Gannouni, M.
    Ben Assaker, I.
    Souissi, A.
    Chtourou, R.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 653 : 395 - 401
  • [47] Multi-walled carbon nanotubes modified Bi2S3 microspheres for enhanced photocatalytic decomposition efficiency
    Zhao, Guoqing
    Zhang, Dan
    Yu, Jingang
    Xie, Yong
    Hu, Wenjihao
    Jiao, Feipeng
    CERAMICS INTERNATIONAL, 2017, 43 (17) : 15080 - 15088
  • [48] SiO2/polyelectrolyte(PE)/Bi2S3 core-shell nanoparticles:: Synthesis and properties
    Zhang, LX
    Luo, J
    Wang, L
    Jin, P
    Chen, QW
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2005, 21 (09) : 1281 - 1285
  • [49] Bi2S3 Nanotubes: Facile Synthesis and Growth Mechanism
    Wang, Dingsheng
    Hao, Chenhui
    Zheng, Wen
    Ma, Xiaoling
    Chu, Deren
    Peng, Qing
    Li, Yadong
    NANO RESEARCH, 2009, 2 (02) : 130 - 134
  • [50] Novel synthesis of Bi2S3 short nanorods and Bi2S3/BiOBr composite with superior photocatalytic performance for degrading organic pollutants
    Hao, Tianran
    Xu, Hongliang
    Yu, Han
    Li, Mingliang
    Song, Bo
    Shao, Gang
    Fan, Bingbing
    Wang, Hailong
    Lu, Hongxia
    Zhang, Rui
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 360