A new type of recurrence relations for the Secant method

被引:8
|
作者
Hernández, MA [1 ]
Rubio, MJ [1 ]
机构
[1] Univ La Rioja, Dept Math & Comp, Logrono 26004, Spain
关键词
the Secant method; recurrence relations; a priori error bounds;
D O I
10.1080/00207169908804870
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the Secant method to solve nonlinear operator equations in Banach spaces. We establish a Newton-Kantorovich convergence theorem using a new system of recurrence relations and give an explicit expression for the a priori error bounds. Moreover, we apply our results to the numerical resolution of a nonlinear boundary value problem of second order and improve the error bounds obtained by other authors.
引用
收藏
页码:477 / 490
页数:14
相关论文
共 50 条
  • [21] ON THE SECANT METHOD
    ARGYROS, IK
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 43 (3-4): : 223 - 238
  • [22] A NEW SECANT METHOD FOR NONLINEAR LEAST SQUARES PROBLEMS
    盛松柏
    邹志鸿
    Numerical Mathematics A Journal of Chinese Universities(English Series), 1993, (02) : 125 - 137
  • [23] A Semilocal Convergence of a Secant–Type Method for Solving Generalized Equations
    Said Hilout
    Alain Piétrus
    Positivity, 2006, 10 : 693 - 700
  • [24] A new secant method for minima one variable problems
    Sulaiman, Barah M.
    Hassan, Basim A.
    Sulaiman, Ranen M.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (06) : 1015 - 1021
  • [25] New semilocal and local convergence analysis for the Secant method
    Magrenan, A. Alberto
    Argyros, Ioannis K.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 262 : 298 - 307
  • [26] A new method of secant-like for nonlinear equations
    Zhang Hui
    Li De-Sheng
    Liu Yu-Zhong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (07) : 2923 - 2927
  • [27] An uniparametric Secant-type method for nonsmooth generalized equations
    Hilout, Saied
    POSITIVITY, 2008, 12 (02) : 281 - 287
  • [28] STRUCTURAL AND RECURRENCE RELATIONS FOR HYPERGEOMETRIC-TYPE FUNCTIONS BY NIKIFOROV-UVAROV METHOD
    Cardoso, J. L.
    Fernandes, C. M.
    Alvarez-Nodarse, R.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2009, 35 : 17 - 39
  • [29] Recurrence relations for Chebyshev-type methods
    Ezquerro, JA
    Hernández, MA
    APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 41 (02): : 227 - 236
  • [30] Recurrence Relations for Chebyshev-Type Methods
    J. A. Ezquerro
    M. A. Hernández
    Applied Mathematics and Optimization, 2000, 41 : 227 - 236