A new type of recurrence relations for the Secant method

被引:8
|
作者
Hernández, MA [1 ]
Rubio, MJ [1 ]
机构
[1] Univ La Rioja, Dept Math & Comp, Logrono 26004, Spain
关键词
the Secant method; recurrence relations; a priori error bounds;
D O I
10.1080/00207169908804870
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the Secant method to solve nonlinear operator equations in Banach spaces. We establish a Newton-Kantorovich convergence theorem using a new system of recurrence relations and give an explicit expression for the a priori error bounds. Moreover, we apply our results to the numerical resolution of a nonlinear boundary value problem of second order and improve the error bounds obtained by other authors.
引用
收藏
页码:477 / 490
页数:14
相关论文
共 50 条
  • [1] Convergence analysis for the Secant method based on new recurrence relations
    Bi Wei-hong
    Ren Hong-min
    Wu Qing-biao
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2008, 23 (04) : 447 - 454
  • [2] Convergence analysis for the Secant method based on new recurrence relations
    Wei-hong Bi
    Hong-min Ren
    Qing-biao Wu
    Applied Mathematics-A Journal of Chinese Universities, 2008, 23 : 447 - 454
  • [3] Convergence analysis for the Secant method based on new recurrence relations
    BI Wei-hong1 REN Hong-min2 WU Qing-biao11 Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2008, (04) : 447 - 454
  • [4] Improved convergence analysis for the secant method based on a certain type of recurrence relations
    Argyros, IK
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (05) : 629 - 637
  • [5] New recurrence relations for Chebyshev method
    Gutierrez, JM
    Hernandez, MA
    APPLIED MATHEMATICS LETTERS, 1997, 10 (02) : 63 - 65
  • [6] New recurrence relations for Chebyshev method
    Dept. of Mathematics and Computation, University of La Rioja, C/ Luis de Ulloa s/n, 26004, Logrono, Spain
    Appl Math Lett, 2 (63-65):
  • [7] A New Secant Type Method with Quadratic-Order Convergence
    Salih, Zinah F.
    Hassan, Basim A.
    Sulaiman, Barah M.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (03): : 1301 - 1306
  • [8] A new secant type method for solving one variable functions
    Al-Rawi, Ekhlass S.
    Hassan, Basim A.
    Sulaiman, Barah M.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (47): : 1085 - 1090
  • [9] A new secant type method for solving one variable functions
    Al-Rawi, Ekhlass S.
    Hassan, Basim A.
    Sulaiman, Barah M.
    Italian Journal of Pure and Applied Mathematics, 2022, 47 : 1085 - 1090
  • [10] Some properties of generalized secant integrals: extended definition and recurrence relations
    Michieli, I
    RADIATION PHYSICS AND CHEMISTRY, 2001, 60 (06) : 551 - 554