CONFORMAL BLOCKS AND RATIONAL NORMAL CURVES

被引:15
|
作者
Giansiracusa, Noah [1 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
关键词
MODULI SPACES; GEOMETRY; POLYGONS;
D O I
10.1090/S1056-3911-2013-00601-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Chow quotient parameterizing configurations of n points in P-d which generically lie on a rational normal curve is isomorphic to (M) over bar (0,n), generalizing the well-known d = 1 result of Kapranov. In particular, (M) over bar (0,n) admits birational morphisms to all the corresponding geometric invariant theory (GIT) quotients. For symmetric linearizations, the polarization on each GIT quotient pulls back to a divisor that spans the same extremal ray in the symmetric nef cone of (M) over bar (0,n) as a conformal blocks line bundle. A symmetry in conformal blocks implies a duality of point-configurations that comes from Gale duality and generalizes a result of Goppa in algebraic coding theory. In a suitable sense, (M) over bar (0,2m) is fixed pointwise by the Gale transform when d = m - 1 so stable curves correspond to self-associated configurations.
引用
收藏
页码:773 / 793
页数:21
相关论文
共 50 条
  • [1] Conformal blocks for Galois covers of algebraic curves
    Hong, Jiuzu
    Kumar, Shrawan
    COMPOSITIO MATHEMATICA, 2023, 159 (10) : 2191 - 2259
  • [2] Nuclei of normal rational curves
    Gmainer J.
    Havlicek H.
    Journal of Geometry, 2000, 69 (1-2) : 117 - 130
  • [3] Completeness of normal rational curves
    Storme, L.
    Journal of Algebraic Combinatorics, 1992, 1 (02)
  • [4] Normal bundle of monomial curves: an application to rational curves
    Alzati, Alberto
    Mallavibarrena, Raquel
    PORTUGALIAE MATHEMATICA, 2023, 80 (3-4) : 207 - 224
  • [5] Existence results for rational normal curves
    Carlini, E.
    Catalisano, M. V.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 76 : 73 - 86
  • [6] Dynamical systems for rational normal curves
    J. A. Vargas
    Collectanea mathematica, 2008, 59 : 325 - 346
  • [7] Rational Normal Curves and Hadamard Products
    Carlini, Enrico
    Catalisano, Maria Virginia
    Favacchio, Giuseppe
    Guardo, Elena
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (03)
  • [8] Curves on normal rational cubic surfaces
    Brevik, John
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 230 (01) : 73 - 105
  • [9] Fat points on rational normal curves
    Catalisano, MV
    Ellia, P
    Gimigliano, A
    JOURNAL OF ALGEBRA, 1999, 216 (02) : 600 - 619
  • [10] Rational Normal Curves and Hadamard Products
    Enrico Carlini
    Maria Virginia Catalisano
    Giuseppe Favacchio
    Elena Guardo
    Mediterranean Journal of Mathematics, 2022, 19